sample files/cherry-2011-mathematical-induction-eitxsrhu.pdf Mathematical Induction William Cherry February 2011 These notes provide some additional examples to supplement the section of the text on...

1 answer below »
maths


sample files/cherry-2011-mathematical-induction-eitxsrhu.pdf Mathematical Induction William Cherry February 2011 These notes provide some additional examples to supplement the section of the text on mathe- matical induction. Inequalities. It happens that often in mathematics, the more freedom one has in creating a solution, the more difficult it is to solve a problem. Often the easiest problems to solve are those where there is really only one way to get to the solution. In particular, this means that it is often more difficult to prove an inequality than an equality. Because your textbook does not work through examples of how to use induction to prove inequalities and yet these can be some of the more difficult exercises, these notes are intended to provide some examples of using induction to prove inequalities. Proposition 1. For every n ∈ N, we have n2 + 6n+ 7 < 20n2.="" proof="" by="" induction.="" let="" p="" (n)="" be="" the="" proposition="" n2="" +="" 6n+="" 7="">< 20n2.="" base="" step.="" we="" check="" p="" (1),="" which="" says="" 12="" +6(1)+="" 7="">< 20(1)2.="" the="" left-hand-side="" is="" 14="" and="" the="" right="" hand="" side="" is="" 20,="" so="" p="" (1)="" is="" true="" and="" the="" base="" step="" is="" complete.="" induction="" step.="" assume:="" n2="" +="" 6n+="" 7="">< 20n2.="" show:="" (n+="" 1)2="" +="" 6(n+="" 1)="" +="" 7="">< 20(n+="" 1)2.="" we="" will="" begin="" with="" the="" left-hand-side="" of="" the="" inequality="" we="" want="" to="" show="" because="" this="" is="" the="" more="" “complicated”="" looking="" side:="" (n+="" 1)2="" +="" 6(n+="" 1)="" +="" 7="n2" +="" 2n+="" 1="" +="" 6n+="" 6="" +="" 7="" [multiply="" out]="(n2" +="" 6n+="" 7)="" +="" (2n+="" 7)="" [group="" terms="" to="" make="" use="" of="" our="" assumption]="">< 20n2="" +="" (2n+="" 7)="" [using="" our="" induction="" assumption]="20n2" +="" 2n+="" 7="">< 20n2="" +="" 40n+="" 7="" [since="" 2n="">< 40n]="">< 20n2="" +="" 40n+="" 20="" [since="" 7="">< 20]="20(n2" +="" 2n+="" 1)="" [factor="" out="" 20]="20(n+" 1)2.="" [factor]="" thus,="" (n+="" 1)2="" +="" 6(n+="" 1)="" +="" 7="">< 20(n+="" 1)2,="" which="" is="" what="" we="" needed="" to="" show.="" remark.="" when="" we="" do="" a="" proof="" like="" this,="" it="" is="" important="" that="" all="" of="" our="" inequalities="" go="" the="" “same="" way.”="" in="" this="" case,="" they="" were="" all="">< .="" we="" may="" not="" mix="">< and=""> . 1 Mathematical Induction 2 Proposition 2. For every natural number n ≥ 12, we have 5n < n!.="" proof="" by="" induction.="" base="" step.="" in="" this="" case,="" we="" only="" claim="" the="" inequality="" is="" true="" for="" n="" ≥="" 12,="" so="" that="" makes="" our="" base="" step="" n="12." thus,="" we="" need="" to="" check="" whether="" 512="">< 12!.="" using="" a="" calculator="" or="" computer="" (or="" a="" lot="" of="" patience),="" we="" determine="" that="" 512="244," 140,="" 625="" and="" 12!="479," 001,="" 600,="" and="" thus="" we="" see="" that="" the="" base="" step="" is="" true.="" induction="" step.="" assume:="" 5n="">< n!.="" show:="" 5n+1="">< (n+="" 1)!.="" we’ll="" start="" with="" the="" left-hand-side="" of="" what="" we="" are="" trying="" to="" show:="" 5n+1="5" ·="" 5n="" [re-write="" so="" we="" can="" use="" our="" assumption]="">< 5="" ·="" n!="" [since="" 5n="">< n!="" by="" our="" induction="" assumption]="">< (n+="" 1)="" ·="" n!="" [since="" n+="" 1=""> 5 (remember n ≥ 12)] = (n+ 1)!. [simplifying] Hence, 5n+1 < (n+="" 1)!="" as="" required.="" remark.="" this="" last="" example="" also="" shows="" the="" necessity="" of="" the="" base="" step.="" notice="" that="" the="" only="" thing="" we="" needed="" in="" the="" induction="" step="" was="" that="" n+="" 1=""> 5, so the induction step works as long as n > 5. However, 56 = 3125 and 6! = 720, so the proposition is not true for n = 6. We really need the base step too for our proof to be valid. Sometimes we might have to prove several inequalities in order to get to the one we want. For example, suppose we want to prove n3 < 2n.="" if="" we="" take="" a="" look="" at="" the="" induction="" step,="" it="" would="" go="" something="" like="" this:="" assume:="" n3="">< 2n.="" show:="" (n+="" 1)3="">< 2n+1.="" if="" we="" now="" start="" working="" with="" what="" we="" want="" to="" show,="" we="" get="" something="" like="" (n+="" 1)3="n3" +="" 3n2="" +="" 3n+="" 1="" [multiply="" out]="">< 2n="" +="" 3n2="" +="" 3n+="" 1.="" but,="" now="" we="" are="" kind="" of="" stuck.="" if,="" however,="" we="" somehow="" knew="" that="" 3n2="" +="" 3n="" +="" 1="">< 2n,="" we="" could="" continue:="" 2n="" +="" 3n2="" +="" 3n+="" 1="">< 2n="" +="" 2n="2" ·="" 2n="2n+1." well,="" we="" should="" then="" try="" to="" prove="" 3n2="" +="" 3n="" +="" 1="">< 2n,="" which="" we="" can="" also="" do="" by="" induction,="" after="" taking="" another="" detour.="" mathematical="" induction="" 3="" proposition="" 3.="" for="" each="" naturual="" number="" n="" ≥="" 6,="" we="" have="" 6n+="" 6="">< 2n.="" proof="" by="" induction.="" base="" step.="" when="" n="6," we="" have="" 6(6)="" +="" 6="42">< 64="26." induction="" step.="" assume:="" 6n+="" 6="">< 2n.="" show:="" 6(n+="" 1)="" +="" 6="">< 2n+1.="" now,="" 6(n+="" 1)="" +="" 6="6n+" 6="" +="" 6="">< 2n="" +="" 6="" [using="" our="" induction="" assumption]="">< 2n="" +="" 2n="" [since="" 6="">< 2n="" when="" n="" ≥="" 3]="2" ·="" 2n="2n+1," as="" was="" to="" be="" shown.="" proposition="" 4.="" for="" each="" natural="" number="" n="" ≥="" 8,="" we="" have="" 3n2="" +="" 3n+="" 1="">< 2n.="" proof="" by="" induction.="" base="" step.="" when="" n="8," we="" have="" 3(8)2="" +="" 3(8)="" +="" 1="217">< 256="28," and="" so="" the="" base="" step="" is="" true.="" induction="" step.="" assume:="" 3n2="" +="" 3n+="" 1="">< 2n.="" show:="" 3(n+="" 1)2="" +="" 3(n+="" 1)="" +="" 1="">< 2n+1.="" starting="" with="" the="" left-hand-side="" of="" what="" we="" need="" to="" show,="" we="" have="" 3(n+="" 1)2="" +="" 3(n+="" 1)="" +="" 1="3(n2" +="" 2n+="" 1)="" +="" 3n+="" 3="" +="" 1="3n2" +="" 6n+="" 3="" +="" 3n+="" 3="" +="" 1="(3n2" +="" 3n+="" 1)="" +="" (6n+="" 6)="" [re-group="" to="" apply="" induction="" assumption]="">< 2n="" +="" (6n+="" 6)="" [by="" our="" induction="" assumption]="">< 2n="" +="" 2n="" [by="" proposition="" 3]="2" ·="" 2n="2n+1," as="" required.="" we="" are="" now="" finally="" able="" to="" get="" to="" the="" inequality="" we="" wanted.="" proposition="" 5.="" for="" each="" natural="" number="" n="" ≥="" 10,="" we="" have="" n3="">< 2n.="" proof="" by="" induction.="" base="" step.="" when="" n="10," we="" have="" 103="1000">< 1024="210," mathematical="" induction="" 4="" and="" so="" the="" base="" step="" holds.="" induction="" step.="" assume:="" n3="">< 2n.="" show:="" (n+="" 1)3="">< 2n+1.="" starting="" with="" the="" left-hand-side,="" (n+="" 1)3="n3" +="" 3n2="" +="" 3n+="" 1="" [multiply="" out]="">< 2n="" +="" 3n2="" +="" 3n+="" 1="" [using="" our="" induction="" assumption]="">< 2n="" +="" 2n="" [by="" proposition="" 4]="2" ·="" 2n="2n+1," and="" so="" we="" are="" done.="" generalized="" strong="" induction.="" the="" method="" of="" proof="" by="" induction="" can="" be="" generalized="" as="" follows.="" suppose="" we="" have="" a="" proposition="" p="" (n)="" and="" suppose="" we="" want="" to="" prove="" that="" p="" (n)="" is="" true="" for="" all="" integers="" n="" such="" that="" n="" ≥="" m="" for="" some="" integer="" m.="" suppose="" we="" also="" prove="" the="" following:="" generalized="" base="" step:="" there="" exists="" an="" `="" ∈="" z="" such="" that="" p="" (j)="" is="" true="" for="" j="m,m+" 1,="" .="" .="" .="" ,="" `.="" strong="" induction="" step:="" for="" each="" k="" ∈="" z="" such="" that="" k="" ≥="" `,="" we="" have="" (p="" (m)="" ∧="" p="" (m+="" 1)="" ∧="" p="" (m+="" 2)="" ∧="" ·="" ·="" ·="" ∧="" p="" (k))="" ⇒="" p="" (k="" +="" 1).="" in="" analogy="" with="" my="" stairstep="" explanation="" in="" class,="" this="" goes="" as="" follows.="" for="" the="" generalized="" base="" step,="" suppose="" we="" can="" show="" that="" we="" can="" get="" to="" any="" of="" the="" first="" five="" stairs="" on="" the="" infinite="" stair="" case.="" now="" suppose="" that="" we="" can="" show="" that="" if="" we="" can="" get="" all="" the="" stairs="" before="" the="" k="" +="" 1-st="" step,="" then="" we="" can="" also="" get="" to="" k+1-st="" step.="" then="" we="" can="" climb="" all="" the="" stairs.="" imagine,="" for="" example,="" that="" in="" order="" to="" go="" up="" a="" stair,="" we="" need="" to="" both="" stand="" on="" the="" stair="" before,="" and="" use="" the="" assistance="" of="" a="" pole="" resting="" on="" the="" stair="" before="" that.="" in="" practice,="" strong="" induction="" often="" works="" as="" follows.="" we="" do="" a="" double="" base="" step,="" for="" example,="" we="" show="" p="" (1)="" and="" p="" (2)="" are="" true.="" then,="" for="" the="" induction="" step,="" we="" show="" that="" p="" (n−="" 1)="" and="" p="" (n)="" together="" imply="" p="" (n+="" 1).="" that="" is,="" we="" use="" the="" assistance="" of="" two="" previous="" stairs="" to="" help="" us="" climb="" to="" the="" next="" step.="" here="" is="" an="" example.="" proposition="" 6.="" for="" each="" natural="" number="" n,="" there="" exist="" natural="" numbers="" a="" and="" b="" such="" that="" 5n="a2" +="" b2.="" proof="" by="" strong="" induction.="" base="" step.="" we="" will="" do="" a="" double="" base="" step,="" allowing="" us="" to="" go="" two="" steps="" back="" in="" our="" induction="" step.="" for="" n="1," we="" can="" choose="" a="1" and="" b="2" and="" we="" have="" 51="5" =="" 1="" +="" 4="12" +="" 22.="" for="" n="2," we="" can="" choose="" a="3" and="" b="4," since="" 52="32" +="" 42.="" mathematical="" induction="" 5="" induction="" step.="" for="" this="" proof,="" instead="" of="" showing="" that="" p="" (n)="" implies="" p="" (n="" +="" 1),="" we="" will="" show="" that="" p="" (n="" −="" 1)="" implies="" p="" (n="" +="" 1).="" because="" we="" are="" “skipping="" over="" a="" step”="" each="" time,="" we="" need="" the="" double="" base="" step="" above.="" assume:="" there="" exist="" a="" and="" b="" in="" n="" such="" that="" 5n−1="a2" +="" b2.="" show:="" there="" exist="" c="" and="" d="" in="" n="" such="" that="" 5n+1="c2" +="" d2.="" we="" start="" with="" the="" left-hand-side,="" and="" write="" 5n+1="52" ·="" 5n−1.="" then,="" we="" use="" our="" induction="" assumption="" that="" 5n−1="a2" +="" b2.="" so,="" we="" then="" have="" 5n+1="52" ·="" 5n−1="52(a2" +="" b2)="52a2" +="" 52b2="(5a)2" +="" (5b)2.="" thus,="" we="" can="" choose="" c="5a" and="" d="5b" to="" get="" 5n+1="c2" +="" d2,="" and="" our="" proof="" is="" complete.="" fibonacci="" numbers.="" the="" fibonacci="" numbers="" are="" defined="" recursively="" as="" follows:="" f0="0," f1="1," and="" fn="Fn−1" +="" fn−2="" for="" n="" ≥="" 2.="" so,="" for="" instance,="" the="" fibonacci="" numbers="" start="" out="" 0,="" 1,="" 1,="" 2,="" 3,="" 5,="" 8,="" 13,="" 21,="" 34,="" 55,="" 89,="" 144,="" 233,="" .="" .="" .="" where="" the="" first="" two="" are="" 0="" and="" 1="" and="" each="" successive="" number="" is="" obtained="" by="" adding="" the="" previous="" two.="" problems="" involving="" fibonacci="" numbers="" are="" natural="" candidates="" for="" going="" backward="" two="" steps.="" proposition="" 7.="" for="" each="" n="0," 1,="" 2,="" 3,="" .="" .="" .="" ,="" we="" have="" fn="">< 2="" n.="" proof="" by="" strong="" induction.="" base="" step.="" we="" will="" verify="" the="" inequality="" for="" n="0" and="" n="1" for="" our="" base="" step.="" for="" n="0," we="" have="" f0="0">< 1="2" 0.="" for="" n="1," we="" have="" f1="1">< 2 = 2 1, and so we have 2="2" 1,="" and="" so="" we="">
Answered 22 days AfterFeb 10, 2021

Answer To: sample files/cherry-2011-mathematical-induction-eitxsrhu.pdf Mathematical Induction William Cherry...

Komalavalli answered on Mar 05 2021
126 Votes
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here