Lap Report (Epicyclic Gear Velocity Ratios) (Belt Friction) (Determination of Moments of Inertia) Name: Mahmood Mohamed Nasser Alhabsi ID Number: XXXXXXXXXX Submission Date: 2/6/2020 Executive Summary...

1 answer below »
I will send a file to you


Lap Report (Epicyclic Gear Velocity Ratios) (Belt Friction) (Determination of Moments of Inertia) Name: Mahmood Mohamed Nasser Alhabsi ID Number: 19077925 Submission Date: 2/6/2020 Executive Summary This report will contain of three main experiment which are determine of moment of inertia, belt friction, and epicyclic gear velocity ratios. The first experiment will be about finding the coefficient friction of two types of pulley-belt configuration. The experiment has two parts , in part one it will use the coil friction rig to determine the coefficient by changing the angles of lap, in part two it will use the vee-belt friction rig to determine the coefficient by keep the angle of lap constant less than 90 degrees and changing the tension two. In addition, compare the experiment values with the theoretical values. The second experiment will be about find the velocity ratios for different types of gear arrangements. There are four main components of gear system which are sun gear, planet gear, carrier arm, and annulus (ring) gear. In addition, the experiment will be of three gearing arrangement. First arrangement will be about simple gear train, in this part the carrier arm will be fixed, sun and annulus gears will be the input and output shaft respectively and from the input and output shaft the velocity ratio will obtain. For the second arrangement which is annulus gear fixed, the annulus gear will be fixed, and carrier arm will rotate, so from that the input and output shaft will be sun and carrier arm respectively. In last arrangement, the sun gear will be fixed, and annulus gear will be released so, the input and output shaft will be carrier arm and annulus respectively. After determining the velocity ratios for each arrangement experimentally, it will use the tabular method to determine the velocity ratios theoretically and compare between them. The last experiment will be about determining the moment of inertia using two methods which are compound pendulum method and trifilar suspension method. In compound pendulum method, first part is to calculate the time taken for 50 oscillations about the end of a and b respectively and find the average time, then find the location of centre of mass b using the time has found and after find the value of b the moment of inertia will be determine. The second method, first thing is calculating the average time taken for 40 oscillations of the empty platform, then add the additional mass for the platform and calculate the average time taken for 40 oscillations. After calculating the average time, the moment of inertia will be obtained. The formatting of report will be technical analysis which will give a brief of result of each experiment, and discussion sections which will provide an explanation of the result found in technical analysis. And final part is short summary of each experiment. Contents 1.0 Introduction ................................................................................................................................. 1 2.0 Belt Friction ...................................................................................................................................... 2 2.1 Technical Analysis ........................................................................................................................ 2 2.1.A Part A ............................................................................................................................................ 2 2.1.B Part B ............................................................................................................................................. 5 2.2 Discussion ..................................................................................................................................... 7 2.3 Conclusion .................................................................................................................................... 7 3.0 Epicyclic Gear Velocity Ratios ......................................................................................................... 8 3.1 Technical analysis ......................................................................................................................... 8 3.2 Discussion ................................................................................................................................... 10 3.3 Conclusion ..............................................................................
Answered Same DayJun 11, 2021

Answer To: Lap Report (Epicyclic Gear Velocity Ratios) (Belt Friction) (Determination of Moments of Inertia)...

Rahul answered on Jun 12 2021
137 Votes
Lap Report (Epicyclic Gear Velocity Ratios)
(Belt Friction) (Determination of Moments of Inertia)
Name: Mahmood Mohamed Nasser Alhabsi ID Number: 19077925
Submission Date: 2/6/2020
Executive Summary
This ireport iwill icontain iof ithree imain iexperiment iwhich iare idetermine iof imoment iof iinertia, ibelt ifriction, iand iepicyclic igear ivelocity iratios. iThe ifirst iexperiment iwill ibe iabout ifinding ithe icoefficient ifriction iof itwo itypes iof ipulley-belt iconfiguration. iThe iexperiment ihas itwo iparts i, iin ipart ione iit iwill iuse ithe icoil ifriction irig ito idetermine ithe icoefficient iby ichanging ithe iangles iof ilap, iin ipart itwo iit iwill iuse ithe ivee-belt ifri
ction irig ito idetermine ithe icoefficient iby ikeep ithe iangle iof ilap iconstant iless ithan i90 idegrees iand ichanging ithe itension itwo. iIn iaddition, icompare ithe iexperiment ivalues iwith ithe itheoretical ivalues.
The isubsequent itest iwill iabout idiscover ithe ispeed iproportions ifor ivarious ikinds iof irigging iplans. iThere iare ifour ifundamental iparts iof irigging iframework iwhich iare isun igear, iplanet igear, ibearer iarm, ian iannulus i(ring) igear. iFurthermore, ithe itest iwill ibe iof ithree iequipping icourses iof iaction. iThe ifirst icourse iof iaction iwill ibe iabout istraightforward irigging itrain, iin ithis ipart, ithe itransporter iarm iwill ibe ifixed, isun iand iannulus iapparatuses iwill ibe ithe iinformation iand iyield ishaft iindividually iand ifrom ithe iinfo iand iyield ishaft, ithe ispeed iproportion iwill iacquire. iFor ithe isecond icourse iof iaction iwhich iis iannulus igear ifixed, ithe iannulus iapparatus iwill ibe ifixed, iand itransporter iarm iwill iturn, iso ifrom ithat ithe iinfo iand iyield ishaft iwill ibe isun iand ibearer iarm iindividually. iIn ithe ilast icourse iof iaction, ithe isun iapparatus iwill ibe ifixed, iand iannulus irigging iwill ibe idischarged iin ithis iway, ithe iinformation iand iyield ishaft iwill ibe ibearer iarm iand iannulus iindividually. iIn ithe iwake iof ideciding ithe ispeed iproportions ifor ievery igame iplan itentatively, iit iwill iutilize ithe iplain itechnique ito idecide ithe ispeed iproportions ihypothetically iand ilook iat ibetween ithem. i
The ilast itrial iwill ibe itied iin iwith ideciding ithe isnapshot iof iidleness iutilizing itwo istrategies iwhich iare icompound ipendulum itechnique iand itrifler isuspension istrategy. iIn icompound ipendulum itechnique, ian iinitial isegment iis ito ifigure ithe itime itaken ifor i50 imotions iabout ithe ifinish iof ian iand ib iseparately iand ilocate ithe inormal itime, iat ithat ipoint idiscover ithe iarea iof ifocus iof imass ib iutilizing ithe itime ihas ifound iand iafter idiscovering ithe iestimation iof ib ithe isnapshot iof idormancy iwill ibe idecided. iThe isubsequent istrategy, ithe ifirst ithing iis ifiguring ithe inormal itime itaken ifor i40 imotions iof ithe ivacant istage, iat ithat ipoint iinclude ithe iextra imass ifor ithe istage iand icompute ithe inormal itime itaken ifor i40 imotions. iSubsequent ito ifiguring ithe inormal itime, ithe isnapshot iof ilatency iwill ibe iacquired. i
The iorganizing iof ireport iwill ibe ispecialized iinvestigation iwhich iwill igive ia ibrief iof ithe iconsequence iof ieach iexamination, iand iconversation isegments iwhich iwill igive ia iclarification iof ithe ioutcome ifound iin ithe ispecialized iinvestigation. iFurthermore, ithe ilast ipart iis ia ishort isynopsis iof ieach iinvestigation.
Contents
1.0    Introduction    1
Belt Friction    2
Technical Analysis    2
Part A    2
Part B    5
Discussion    7
Conclusion    7
Epicyclic Gear Velocity Ratios    8
Technical analysis    8
Discussion    10
Conclusion    11
Moment of Inertia    12
Technical Analysis    12
5.0 referencing    17
Appendixes    18
Nomenclature    18
List of Figures
Figure 1: Configuration    2
Figure 2: Relationship between the tension and angles of lap    4
Figure 3: Relationship between the tension one and two    6
Figure 4: The sketch of gear arrangement including labels and teeth numbers    9
Figure 5: Specimen    13
List of Tables
Table 1: Angles of lap    3
Table 2: Result for angles of lap with mass one and two    3
Table 3: Result between the angles of lap with tension one    4
Table 4: The values of mass one and two    5
Table 5: The values of tension one and two    5
Table 6: Gear types and number of teeth    9
Table 7: Experimental velocity ratios    9
Table 8: Theoretical velocity ratio for annulus gear rotation    10
Table 9: Theoretical velocity ratio for sun gear rotation    10
Table 10: Average time taken for trial A    12
Table 11: Average time taken for trial B    12
Table 12: Average time taken for empty platform    14
Table 13: Average time taken for platform with additional mass    15
Table 14: Nomenclature    18
1.0 Introduction
This ireport iwill idiscuss iabout ithree iexperiment iwhich iare ibelt ifriction, iepicyclic igear ivelocity iratios iand idetermine iof imoment iof iinertia.
To istart iwith, ithe ipoint iof ibelt igrinding itest iis ito idiscover ithe icoefficient iof iFriction i? iof itwo ikinds iof ibelt-menace, ithe ifirst isort iis iutilizing ithe icurl igrating iring ito idiscover ithe icoefficient iby ichanging ithe iedge iof ithe ilap, ithe isecond isort iis iutilizing ivee-belt ierosion iring ito idiscover ithe icoefficient iby ikeeping ithe iedge iof ilap iconsistent iand ichanging ithe istrain i?2 ion ithe ileeway iside. i
Belt igrating ican ibe idepicted ias ia iframework ithat icontains ia ibelt ior ilink ifolded iover ithe ipulley iand isurface ito icause irubbing ibetween ithem. iWhat's imore, ithere iwas isome iapplication iin ibuilding ifield iutilized ithe iidea iof iadaptable ibelts, iropes, iand ilinks. iBelts ican ibe iutilized ifor ipower itransmission ibetween ithe iturning ishafts. i
Second, ithe ianalysis iof iEpicyclic iapparatus ispeed iproportions icentres iaround ito idecide ithe ispeed iproportions ifor iepicyclic irigging iframeworks. iEpicyclic iriggings icomprise iof ifour iapparatuses iwhich iare isun igear, iplanet igear, itransporter iarm iand iring igear. iThis iinvestigation ihas ithree ifundamental istrategies iwhich iare ibasic irigging itrain, iannulus igear ifixed, iand isun igear ifixed.
Epicyclic iapparatus iis ione iof imechanical itransmission igadget ithat iused ito imove ithe imovement ifrom ione isection ito iother. iEpicyclic iapparatuses iare iutilized ibroadly ifor imechanical itransmission isince iit ihad ihigh iforce ithickness iand ihigh itorque. iThere iwas inumerous imechanical iapplications ifor iepicyclic irigging, ifor iinstance, iturbine igenerators, icrossbreed ivehicle ipower itransmissions iand iautomated iarms. i
The ilast itest iis ito idiscover ithe isnapshot iof idormancy iutilizing itwo istrategies iwhich iare ithe icompound ipendulum itechnique iand ithe itrifler isuspension itechnique ito iascertain ithe ioutcomes. iIn icompound ipendulum itechnique, ithe iinitial isegment iis ito icompute ithe itime itaken ifor i50 imotions iabout ithe...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here