The questions contained in this AP® Calculus AB Practice Exam are written to the content specifications of AP Exams for this subject. Taking this practice exam should provide students with an idea of...

1 answer below »
The questions contained in this AP® Calculus AB Practice Exam are written to the content specifications
of AP Exams for this subject. Taking this practice exam should provide students with an idea of their
general areas of strengths and weaknesses in preparing for the actual AP Exam. Because this AP
Calculus AB Practice Exam has never been administered as an operational AP Exam, statistical data are
not available for calculating potential raw scores or conversions into AP grades.
This AP Calculus AB Practice Exam is provided by the College Board for AP Exam preparation. Teachers
are permitted to download the materials and make copies to use with their students in a classroom setting
only. To maintain the security of this exam, teachers should collect all materials after their administration
and keep them in a secure location. Teachers may not redistribute the files electronically for any reason.
© 2008 !e College Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central,
SAT, and the acorn logo are registered trademarks of the College Board. PSAT/NMSQT is a registered trade-
mark of the College Board and National Merit Scholarship Corporation. All other products and services may
be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.com.
Practice Exam
Advanced Placement
Program
AP® Calculus AB
Contents

Directions for Administration ......................................................................... XXXXXXXXXXii
Section I: Multiple-Choice Questions............................................................. XXXXXXXXXX1
Section II: Free-Response Questions ........................................................... XXXXXXXXXX30
Student Answer Sheet for Multiple-Choice Section ................................... XXXXXXXXXX36
Multiple-Choice Answer Key........................................................................ XXXXXXXXXX37
Free-Response Scoring Guidelines............................................................... XXXXXXXXXX38

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect
students to college success and opportunity. Founded in 1900, the association is
composed of more than 5,000 schools, colleges, universities, and other educational
organizations. Each year, the College Board serves seven million students and their
parents, 23,000 high schools, and 3,500 colleges through major programs and services in
college admissions, guidance, assessment, financial aid, enrollment, and teaching and
learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the
Advanced Placement Program® (AP®). The College Board is committed to the principles
of excellence and equity, and that commitment is embodied in all of its programs,
services, activities, and concerns.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.
-i-
AP® Calculus AB
Directions for Administration

The AP Calculus AB Exam is 3 hours and 15 minutes in length and consists of a multiple-choice section and a
free-response section.

The 105-minute two-part multiple-choice section contains 45 questions and accounts for 50 percent of the
final grade. Part A of the multiple-choice section (28 questions in 55 minutes) does not allow the use of a
calculator. Part B of the multiple-choice section (17 questions in 50 minutes) contains some questions for
which a graphing calculator is required.

The 90-minute two-part free-response section contains 6 questions and accounts for 50 percent of the
final grade. Part A of the free-response section (3 questions in 45 minutes) contains some questions
or parts of questions for which a graphing calculator is required. Part B of the free-response section
(3 questions in 45 minutes) does not allow the use of a calculator. During the timed portion for Part B,
students are permitted to continue work on questions in Part A, but they are not allowed to use a
calculator during this time.

A 10-minute break should be provided after Section I is completed. Students should not have access to their
graphing calculators during the break.

The actual AP Exam is administered in one session. Students will have the most realistic experience if a complete
morning or afternoon is available to administer this practice exam. If a schedule does not permit one time period
for the entire practice exam administration, it would be acceptable to administer Section I one day and Section II
on a subsequent day.

Total scores on the multiple-choice section are based only on the number of questions answered correctly. No
points are deducted for incorrect answers and no points are awarded for unanswered questions.

Graphing calculators are required to answer some of the questions on the AP Calculus AB Exam. Before
starting the exam administration, make sure each student has a graphing calculator from the approved list
at http://www.collegeboard.com/ap/calculators. During the administration of Section I, Part B, and
Section II, Part A, students may have no more than two graphing calculators on their desks; calculators
may not be shared. Calculator memories do not need to be cleared before or after the exam. Since
graphing calculators can be used to store data, including text, it is important to monitor that students are
using their calculators appropriately.

It is suggested that Section I of the practice exam be completed using a pencil to simulate an actual
administration. Students may use a pencil or pen with black or dark blue ink to complete Section II.

Teachers will need to provide paper for the students to write their free-response answers. Teachers should
provide directions to the students indicating how they wish the responses to be labeled so the teacher will
be able to associate the response with the question the student intended to answer.

Instructions for the Section II free-response questions are included. Ask students to read these instructions
carefully at the beginning of the administration of Section II. Timing for Section II should begin after you
have given students sufficient time to read these instructions.

Remember that students are not allowed to remove any materials, including scratch work, from the testing
site.
-ii-









Section I

Multiple-Choice Questions
-1-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

CALCULUS AB
SECTION I, Part A
Time—55 minutes
Number of questions—28


A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.



Directions: Solve each of the following problems, using the available space for scratch work. After examining
the form of the choices, decide which is the best of the choices given and place the letter of your choice in the
corresponding box on the student answer sheet. Do not spend too much time on any one problem.


In this exam:

(1) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which
( )f x is a real number.

(2) The inverse of a trigonometric function f may be indicated using the inverse function notation 1f - or with the
prefix “arc” (e.g., 1sin arcsinx x- = ).

-2-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

XXXXXXXXXXcos 3x dx =Ú
(A) ( )3sin 3x C- +
(B) ( )1 sin 3
3
x C- +
(C) ( )1 sin 3
3
x C+
(D) ( )sin 3x C+
(E) ( )3sin 3x C+


2.
6 3
5 30
2 6lim
4 3x
x x
x xÆ
+
+
is
(A) 0 (B) 1
2
(C) 1 (D) 2 (E) nonexistent
-3-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

( )
2 3 9 for 2
1 for 2
x x xf x
k x x
Ï - + £= Ì + >Ó

3. The function f is defined above. For what value of k, if any, is f continuous at 2 ?x =
(A) 1
(B) 2
(C) 3
(D) 7
(E) No value of k will make f continuous at 2.x =


4. If XXXXXXXXXX3cos 4 ,f x x= then ( )f x =¢
(A) ( )23cos 4x
(B XXXXXXXXXX212cos 4 sin 4x x-
(C XXXXXXXXXX23cos 4 sin 4x x-
(D XXXXXXXXXX212cos 4 sin 4x x
(E) ( )34sin 4x-

-4-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

5. The function f given by XXXXXXXXXX12f x x x x= - - has a relative minimum at x =
(A XXXXXXXXXXB) 0 (C) 2 (D) 3 105
4
- (E) 3 105
4
+


6. Let f be the function given by XXXXXXXXXXf x x x= - + Which of the following is an equation for the line
tangent to the graph of f at the point where 1 ?x =
(A) 21 2y x= +
(B) 21 19y x= -
(C) 11 9y x= -
(D) 10 2y x= +
(E) 10 8y x= -
-5-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

7.
xe dx
x
=ÛÙı

(A) 2 xe C+
(B) 1
2
xe C+
(C) xe C+
(D) 2 xx e C+
(E) 1
2
xe C
x
+



x XXXXXXXXXX
( )f x 4 k 8 12

8. The function f is continuous on the closed interval [ ]0, 6 and has the values given in the table above.
The trapezoidal approximation for ( )6
0
f x dxÚ found with 3 subintervals of equal length is 52. What
is the value of k ?
(A) 2 (B) 6 (C) 7 (D XXXXXXXXXXE) 14
-6-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

9. A particle moves along the x-axis so that at any time 0,t > its velocity is given by XXXXXXXXXXv t t= - If the
particle is at position 7x = at time 1,t = what is the position of the particle at time 2 ?t =
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD) 3 (E) 17



10. The function f is given by ( )
2
2
12 .axf x
x b
+=
+
The figure above shows a portion of the graph of f. Which of the
following could be the values of the constants a and b ?
(A) 3,a = - 2b =
(B) 2,a = 3b = -
(C) 2,a = 2b = -
(D) 3,a = 4b = -
(E) 3,a = 4b =

-7-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

11. What is the slope of the line tangent to the graph of
1
xey
x
-
= + at 1 ?x =
(A) 1
e
- (B) 3
4e
- (C) 1
4e
- (D) 1
4e
(E) 1
e



12. If ( ) 2f x
x
=¢ and ( ) 5,f e = then ( )f e =
(A) 2 (B) ln XXXXXXXXXXC)
2
2 25
e e
XXXXXXXXXXD) 6 (E) 25
-8-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

XXXXXXXXXX1x dx+ =Ú
(A) 71
7
x x C+ +
(B XXXXXXXXXX
7 2
x x x C+ + +
(C XXXXXXXXXX1x x C+ +
(D XXXXXXXXXXx C+ +
(E)
( )33
2
1
9
x
C
x
+
+


14.
( )2 2
0
lim
h
h
e e
h
+
Æ
- =
(A) 0 (B) 1 (C) 2e (D) 2e (E) 22e
-9-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

15. The slope field for a certain differential equation is shown above. Which of the following could be a solution to
the differential equation with the initial condition ( )0 1 ?y =
(A) cosy x=
(B) 21y x= -
(C) xy e=
(D) 21y x= -
(E)
2
1
1
y
x
=
+

-10-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

16. If ( ) 2 ,f x x= -¢ which of the following could be the graph of ( ) ?y f x=
(A)
(B)
(C)
(D)
(E)


-11-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

17. What is the area of the region enclosed by the graphs of ( ) 22f x x x= - and ( ) 5 ?g x x= -
(A) 7
3
(B) 16
3
(C) 20
3
(D) 9 (E) 36


18. For the function f, ( ) 2 1f x x= +¢ and XXXXXXXXXXf = What is the approximation for ( )1.2f found by using the line
tangent to the graph of f at 1 ?x =
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 4.64
-12-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

19. Let f be the function given by XXXXXXXXXXf x x x= - The graph of f is concave up when
(A) 2x >
(B) 2x <
(C) 0 4x< <
(D) 0x < or 4x > only
(E) 6x > only


20. If XXXXXXXXXX4g x x x= - + and ( ) ( ),f x g x= ¢ then ( )3
1
f x dx =Ú
(A) 14
3
- (B XXXXXXXXXXC) 2 (D) 4 (E) 14
3

-13-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

21. The graph of ,f ¢ the derivative of the function f, is shown above for 0 10.x£ £ The areas of the regions
between the graph of f ¢ and the x-axis are 20, 6, and 4, respectively. If ( )0 2,f = what is the maximum value
of f on the closed interval 0 10 ?x£ £
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 32


22. If XXXXXXXXXX3 4 ,f x x x x= - - -¢ then f has which of the following relative extrema?
I. A relative maximum at 2x =
II. A relative minimum at 3x =
III. A relative maximum at 4x =
(A) I only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III
-14-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

23. The graph of the even function ( )y f x= consists of 4 line segments, as shown above. Which of the following
statements about f is false?
(A) ( ) ( )( )
0
lim 0 0
x
f x f
Æ
- =
(B)
( ) ( )
0
0
lim 0
x
f x f

- =
(C)
( ) ( )
0
lim 0
2x
f x f x

- - =
(D)
( ) ( )
2
2
lim 1
2x
f x f

- =-
(E)
( ) ( )
3
3
lim
3x
f x f

-
- does not exist.
-15-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

24. The radius of a circle is increasing. At a certain instant, the rate of increase in the area of the circle is numerically
equal to twice the rate of increase in its circumference. What is the radius of the circle at that instant?
(A) 1
2
(B) 1 (C XXXXXXXXXXD) 2 (E) 4


25. If 2 33 3,x y x y- = - then at the point ( )1, 2 ,- dy
dx
=
(A) 7
11
- (B) 7
13
- (C) 1
2
- (D) 3
14
- (E) 7
-16-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A


GO ON TO THE NEXT PAGE.

26. For 0,x > f is a function such that ( ) ln xf x
x
=¢ and ( ) 2
1 ln .xf x
x
-=¢¢ Which of the following is true?
(A) f is decreasing for 1,x > and the graph of f is concave down for .x e>
(B) f is decreasing for 1,x > and the graph of f is concave up for .x e>
(C) f is increasing for 1,x > and the graph of f is concave down for .x e>
(D) f is increasing for 1,x > and the graph of f is concave up for .x e>
(E) f is increasing for 0 ,x e< < and the graph of f is concave down for 3 20 .x e< <


27. If f is the function given by XXXXXXXXXX
4
,
x
f x t t dt= -Ú then ( )2f =¢
(A) 0 (B) 7
2 12
(C XXXXXXXXXXD XXXXXXXXXXE) 2 12
-17-


A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A




28. If ( )1sin 5 ,y x-= then dy
dx
=
(A)
2
1
1 25x+

(B)
2
5
1 25x+

(C)
2
5
1 25x
-
-

(D)
2
1
1 25x-

(E)
2
5
1 25x-

















END OF PART A OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY
CHECK YOUR WORK ON PART A ONLY.

DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
-18-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

CALCULUS AB
SECTION I, Part B
Time—50 minutes
Number of questions—17


A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS ON
THIS PART OF THE EXAM.



Directions: Solve each of the following problems, using the available space for scratch work. After examining
the form of the choices, decide which is the best of the choices given and place the letter of your choice in the
corresponding box on the student answer sheet. Do not spend too much time on any one problem.


In this exam:

(1) The exact numerical value of the correct answer does not always appear among the choices given. When this
happens, select from among the choices the number that best approximates the exact numerical value.

(2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which
( )f x is a real number.

(3) The inverse of a trigonometric function f may be indicated using the inverse function notation 1f - or with the
prefix “arc” (e.g., 1sin arcsinx x- = ).

-19-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

76. A particle moves along the x-axis so that at any time 0t ≥ its velocity is given by XXXXXXXXXXln 2 .v t t t= + What is
the acceleration of the particle at time 6 ?t =
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE XXXXXXXXXX


77. If ( )3
0
6f x dx =Ú and ( )
5
3
4,f x dx =Ú then ( )( )
5
0
3 2 f x dx+ =Ú
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 50
-20-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

78. For 0t ≥ hours, H is a differentiable function of t that gives the temperature, in degrees Celsius, at an Arctic
weather station. Which of the following is the best interpretation of ( )24 ?H¢
(A) The change in temperature during the first day
(B) The change in temperature during the 24th hour
(C) The average rate at which the temperature changed during the 24th hour
(D) The rate at which the temperature is changing during the first day
(E) The rate at which the temperature is changing at the end of the 24th hour


79. A spherical tank contains XXXXXXXXXXgallons of water at time 0t = minutes. For the next 6 minutes, water flows out
of the tank at the rate of ( )9sin 1t + gallons per minute. How many gallons of water are in the tank at the end
of the 6 minutes?
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE XXXXXXXXXX
-21-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

80. A left Riemann sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of
( )1
0
,f x dxÚ each using the same number of subintervals. The graph of the function f is shown in the figure
above. Which of the sums give an underestimate of the value of ( )1
0
?f x dxÚ
I. Left sum
II. Right sum
III. Trapezoidal sum
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
-22-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

81. The first derivative of the function f is given by XXXXXXXXXXsin 24 .xf x x e-= -¢ How many points of inflection does the
graph of f have on the interval 0 2 ?x p< <
(A) Three (B) Four (C) Five (D) Six (E) Seven


82. If f is a continuous function on the closed interval [ ], ,a b which of the following must be true?
(A) There is a number c in the open interval ( ),a b such that ( ) 0.f c =
(B) There is a number c in the open interval ( ),a b such that XXXXXXXXXXf a f c f b< <
(C) There is a number c in the closed interval [ ],a b such that XXXXXXXXXXf c f x≥ for all x in [ ], .a b
(D) There is a number c in the open interval ( ),a b such that ( ) 0.f c =¢
(E) There is a number c in the open interval ( ),a b such that XXXXXXXXXXf b f af c
b a
-=¢ -
-23-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

x XXXXXXXXXX
( )f x XXXXXXXXXX05

83. The function f is differentiable and has values as shown in the table above. Both f and f ¢ are strictly increasing
on the interval 0 5.x£ £ Which of the following could be the value of ( )3 ?f ¢
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 30.5


84. The graph of ,f ¢ the derivative of the function f, is shown above. On which of the following intervals is f
decreasing?
(A) [ ]2, 4 only
(B) [ ]3, 5 only
(C) [ ]0, 1 and [ ]3, 5
(D) [ ]2, 4 and [ ]6, 7
(E) [ ]0, 2 and [ ]4, 6
-24-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

85. The base of a loudspeaker is determined by the two curves
2
10
xy = and
2
10
xy = - for 1 4,x£ £ as shown in
the figure above. For this loudspeaker, the cross sections perpendicular to the x-axis are squares. What is the
volume of the loudspeaker, in cubic units?
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE XXXXXXXXXX
-25-
B BBB B BB B B



GO ON TO THE NEXT PAGE.


x XXXXXXXXXX
( )f x XXXXXXXXXX

86. The function f is continuous and differentiable on the closed interval [ ]3, 7 . The table above gives selected
values of f on this interval. Which of the following statements must be true?
I. The minimum value of f on [ ]3, 7 is 12.
II. There exists c, for 3 7,c< < such that ( ) 0.f c =¢
III. ( ) 0f x >¢ for 5 7.x< <
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
-26-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

87. The figure above shows the graph of ,f ¢ the derivative of the function f, on the open interval 7 7.x- < < If
f ¢ has four zeros on 7 7,x- < < how many relative maxima does f have on 7 7 ?x- < <
(A) One (B) Two (C) Three (D) Four (E) Five


88. The rate at which water is sprayed on a field of vegetables is given by XXXXXXXXXX ,R t t= + where t is in minutes
and ( )R t is in gallons per minute. During the time interval 0 4,t£ £ what is the average rate of water flow, in
gallons per minute?
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE XXXXXXXXXX
-27-
B BBB B BB B B



GO ON TO THE NEXT PAGE.

x ( )f x ( )f x¢ ( )g x ( )g x¢
1 3 –2 –3 4

89. The table above gives values of the differentiable functions f and g and their derivatives at 1.x = If
XXXXXXXXXX 1 ,h x f x g x= + + then ( )1h =¢
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 47


90. The functions f and g are differentiable. For all x, ( )( )f g x x= and XXXXXXXXXXg f x x=
If ( )3 8f = and ( )3 9,f =¢ what are the values of ( )8g and ( )8 ?g¢
(A XXXXXXXXXX3g = and ( )
18
9
g = -¢
(B XXXXXXXXXX3g = and ( )
18
9
g =¢
(C) ( )8 3g = and ( )8 9g = -¢
(D) ( )8 3g = and XXXXXXXXXX9g = -¢
(E) ( )8 3g = and XXXXXXXXXX9g =¢
-28-
B BBB B BB B B





91. A particle moves along the x-axis so that its velocity at any time 0t ≥ is given by XXXXXXXXXXtv t te-= - At 0,t =
the particle is at position 1.x = What is the total distance traveled by the particle from 0t = to 4 ?t =
(A XXXXXXXXXXB XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 2.821


92. Let f be the function with first derivative defined by XXXXXXXXXX3sinf x x=¢ for 0 2.x£ £ At what value of x does f
attain its maximum value on the closed interval 0 2 ?x£ £
(A) 0 (B XXXXXXXXXXC XXXXXXXXXXD XXXXXXXXXXE) 2















END OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY
CHECK YOUR WORK ON PART B ONLY.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO SO.
________________________________________________


-29-









Section II

Free-Response Questions
-30-
AP® Calculus
Instructions for Section II Free-Response Questions

Write clearly and legibly. Cross out any errors you make; erased or crossed-out work will not be graded.

Manage your time carefully. During the timed portion for Part A, work only on the questions in Part A. You are
permitted to use your calculator to solve an equation, find the derivative of a function at a point, or calculate the
value of a definite integral. However, you must clearly indicate the setup of your question, namely the equation,
function, or integral you are using. If you use other built-in features or programs, you must show the mathematical
steps necessary to produce your results. During the timed portion for Part B, you may continue to work on the
questions in Part A without the use of a calculator.

For each part of Section II, you may wish to look over the questions before starting to work on them. It is not
expected that everyone will be able to complete all parts of all questions.

• Show all of your work. Clearly label any functions, graphs, tables, or other objects that you use. Your work
will be graded on the correctness and completeness of your methods as well as your answers. Answers
without supporting work may not receive credit. Justifications require that you give mathematical
(noncalculator) reasons.
• Your work must be expressed in standard mathematical notation rather than calculator syntax. For example,
5 2
1
x dx may not be written as fnInt(X2, X, 1, 5).
• Unless otherwise specified, answers (numeric or algebraic) need not be simplified. If you use decimal
approximations in calculations, your work will be graded on accuracy. Unless otherwise specified, your final
answers should be accurate to three places after the decimal point.
• Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for
which f x is a real number.
-31-


GO ON TO THE NEXT PAGE.

CALCULUS AB
SECTION II, Part A
Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.


1. The rate at which raw sewage enters a treatment tank is given by ( )
2
850 715cos
9
tE t p
Ê ˆ= + Á ˜Ë ¯
gallons per hour
for 0 4t£ £ hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per hour.
The treatment tank is empty at time 0.t =
(a) How many gallons of sewage enter the treatment tank during the time interval 0 4 ?t£ £ Round your
answer to the nearest gallon.
(b) For 0 4,t£ £ at what time t is the amount of sewage in the treatment tank greatest? To the nearest gallon,
what is the maximum amount of sewage in the tank? Justify your answers.
(c) For 0 4,t£ £ the cost of treating the raw sewage that enters the tank at time t is XXXXXXXXXX02t- dollars
per gallon. To the nearest dollar, what is the total cost of treating all the sewage that enters the tank during
the time interval 0 4 ?t£ £







-32-




2. Let R and S in the figure above be defined as follows: R is the region in the first and second quadrants
bounded by the graphs of 23y x= - and 2 .xy = S is the shaded region in the first quadrant bounded by
the two graphs, the x-axis, and the y-axis.
(a) Find the area of S.
(b) Find the volume of the solid generated when R is rotated about the horizontal line 1.y = -
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an
isosceles right triangle with one leg across the base of the solid. Write, but do not evaluate, an integral
expression that gives the volume of the solid.



t (minutes XXXXXXXXXX
( )H t ( )C∞ XXXXXXXXXX

3. The temperature, in degrees Celsius ( )C ,∞ of an oven being heated is modeled by an increasing differentiable
function H of time t, where t is measured in minutes. The table above gives the temperature as recorded every
4 minutes over a 16-minute period.
(a) Use the data in the table to estimate the instantaneous rate at which the temperature of the oven is changing
at time 10.t = Show the computations that lead to your answer. Indicate units of measure.
(b) Write an integral expression in terms of H for the average temperature of the oven between time 0t = and
time 16.t = Estimate the average temperature of the oven using a left Riemann sum with four subintervals
of equal length. Show the computations that lead to your answer.
(c) Is your approximation in part (b) an underestimate or an overestimate of the average temperature? Give a
reason for your answer.
(d) Are the data in the table consistent with or do they contradict the claim that the temperature of the oven is
increasing at an increasing rate? Give a reason for your answer.




END OF PART A OF SECTION II

-33-


GO ON TO THE NEXT PAGE.

CALCULUS AB
SECTION II, Part B
Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.


4. Let f be the function given by XXXXXXXXXXln sin .f x x x= The figure above shows the graph of f for 0 2 .x p< £
The function g is defined by ( ) ( )
1
x
g x f t dt= Ú for 0 2 .x p< £
(a) Find ( )1g and ( )1 .g¢
(b) On what intervals, if any, is g increasing? Justify your answer.
(c) For 0 2 ,x p< £ find the value of x at which g has an absolute minimum. Justify your answer.
(d) For 0 2 ,x p< < is there a value of x at which the graph of g is tangent to the x-axis? Explain why
or why not.







-34-




5. Consider the differential equation ,
dy x
dx y
= where 0.y π
(a) The slope field for the given differential equation is shown below. Sketch the solution curve that passes
through the point ( )3, 1 ,- and sketch the solution curve that passes through the point ( )1, 2 .
(Note: The points ( )3, 1- and ( )1, 2 are indicated in the figure.)
(b) Write an equation for the line tangent to the solution curve that passes through the point ( )1, 2 .
(c) Find the particular solution ( )y f x= to the differential equation with the initial condition ( )3 1,= -f
and state its domain.


6. Let ( ) ,x xg x xe be- -= + where b is a positive constant.
(a) Find ( )lim .
x
g x
Æ•

(b) For what positive value of b does g have an absolute maximum at 2 ?
3
x = Justify your answer.
(c) Find all values of b, if any, for which the graph of g has a point of inflection on the interval 0 .x< < •
Justify your answer.






STOP

END OF EXAM



-35-
Answered Same DayMay 02, 2021

Solution

Parvesh answered on May 02 2021
28 Votes

Cam...

Submit New Assignment

Copy and Paste Your Assignment Here