Assignment 2 and Submission Guidelines School School of Information Technology and Engineering Course Name Master of Engineering (Telecommunications) Unit Code ME606 Unit Title Digital Signal...

1 answer below »
Assignment and marking criteria included in that


Assignment 2 and Submission Guidelines School School of Information Technology and Engineering Course Name Master of Engineering (Telecommunications) Unit Code ME606 Unit Title Digital Signal Processing Assessment Author Dr. Reza Berangi Assessment Type Assignment 2 (Individual) Assessment Title z-Transforms, Filters Concepts Unit Learning Outcomes covered in this assessment a. Develop and implement signal processing algorithms in Matlab b. Undertake in-depth design of digital filters Weight 15% Total Marks 100 Word/page limit N/A Release Date Week 7 Due Date Week 11 (31 May 2019, 11:55 pm) Submission Guidelines • All work must be submitted on Moodle by the due date along with a completed Assignment Cover Page. • The assignment must be in MS Word format, single line spacing, 11-pt Calibri (Body) font and 2 cm margins on all four sides of your page with appropriate section headings. • Reference sources must be cited in the text of the report, and listed appropriately at the end in a reference list using IEEE referencing style for School of Business and School of Information Technology and Engineering respectively. Extension If an extension of time to submit work is required, a Special Consideration Application must be submitted directly through the AMS. You must submit this application three working days prior to the due date of the assignment. Further information is available at: http://www.mit.edu.au/about-mit/institute-publications/policies-proceduresand- guidelines/specialconsiderationdeferment Academic Misconduct Academic Misconduct is a serious offence. Depending on the seriousness of the case, penalties can vary from a written warning or zero marks to exclusion from the course or rescinding the degree. Students should make themselves familiar with the full policy and procedure available at: http://www.mit.edu.au/aboutmit/institute-publications/policies-procedures- and-guidelines/PlagiarismAcademic-Misconduct-Policy-Procedure. For further information, please refer to the Academic Integrity Section in your Unit Description. http://www.mit.edu.au/about http://www.mit.edu.au/about http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/special-considerationdeferment http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure http://www.mit.edu.au/about-mit/institute-publications/policies-procedures-and-guidelines/Plagiarism-Academic-Misconduct-Policy-Procedure © MIT/SITE | ME606 Digital Signal Processing Assignment 2 Page 2 of 9 ME606 Assessment 2 Introduction The objective of this assessment is for each student to demonstrate understanding of the contents of lecture materials in the unit by applying the principles and concepts in lecture notes. Concepts covered by this assignment include z-transforms, and FIR filter design. Section 1. FIR filter design In general, we have 3 commonly used FIR filter design techniques (1) Windowed Fourier series approach (2) Frequency sampling approach (3) Computer-based optimization methods In this assignment we practice the first and the second methods in designing FIR filters 1-1 Designing a low pass FIR filter using Windowed Fourier Series approach The amplitude frequency response of an ideal low pass filter is shown in Figure. 1. Its impulse response can be found from its inverse Fourier transform as: h = ( ω? π ) ∗ sinc ( nω? π ) , n =. . , −2, −1,0,1,2, … , 0 <><π (1)="" figure="" 1.="" ideal="" low="" pass="" filter="" amplitude="" frequency="" response="" (left)="" and="" impulse="" response="" (right)="" using="" the="" equation="" (1)="" we="" can="" find="" all="" the="" impulse="" response="" samples.="" the="" filter="" is="" iir="" but="" by="" truncating="" the="" impulse="" response="" to="" a="" limited="" number="" of="" samples="" we="" can="" make="" it="" an="" fir="" filter.="" to="" do="" so="" we="" usually="" select="" m="" samples="" (m="" is="" usually="" odd="" number)="" around="" n="0" as="" shown="" in="" figure="" 2.="" ©="" mit/site="" |="" me606="" digital="" signal="" processing="" assignment="" 2="" page="" 3="" of="" 9="" shift="" by="" m/2="" figure="" 2.="" truncated="" impulse="" response="" by="" multiplying="" the="" resultant="" impulse="" response="" by="" a="" window="" we="" can="" reduce="" unwanted="" ripples="" in="" the="" spectrum.="" the="" following="" matlab="" code="" designs="" a="" fir="" filter="" with="" windowed="" fourier="" series="" approach.="" wp="pi/8;" %="" lowpass="" filter="" bandwidth="" m="121;" n="-(M-1)/2:(M-1)/2;" %="" selection="" time="" window="" h0="(wp/pi)*sinc((wp/pi)*n);" %="" truncated="" impulse="" response="" h="h0.*rectwin(M)';" %="" windowing="" %="" h="h0.*hamming(M)';%" windowing="" %="" h="h0.*hanning(M)';%" windowing="" %="" h="h0.*bartlett(M)';%" windowing="" %="" h="h0.*blackman(M)';%" windowing="" figure;plot(h)="" ylabel('impulse="" response')="" xlabel('samples')="" %="" spectrum="" fftsize="512;" pxx="20*log10(abs(fft(h,FFTsize)));" fxx="(0:(FFTsize/2)-1)*(pi/(FFTsize/2));" figure;plot(fxx,pxx(1:fftsize/2));="" ylabel('amplitude[db]');="" xlabel('frequency="" [radian]');grid="" on="" do="" the="" following="" tasks="" and="" plot="" all="" the="" graphs="" in="" your="" report:="" 1)="" run="" the="" above="" program="" and="" plot="" the="" impulse="" response="" and="" the="" amplitude="" spectrum="" of="" the="" filter.="" 2)="" measure="" the="" filter="" frequency="" response="" at="" p="pi/8." is="" it="" close="" to="" the="" expected="" value="" of="" -6db?="" how="" much="" is="" the="" maximum="" ripple="" in="" the="" pass="" band.="" 3)="" this="" filtering="" technique="" does="" not="" define="" any="" cutoff.="" if="" we="" assume="" the="" stopband="" starts="" at="" -20db,="" measure="" the="" ratio="" of="" the="" transient="" band="" to="" the="" pass="" band.="" 4)="" increase="" the="" filter="" impulse="" response="" length="" to="" m="255" and="" run="" the="" program.="" a)="" if="" we="" assume="" the="" stopband="" starts="" at="" -20db,="" measure="" the="" ratio="" of="" the="" transient="" band="" to="" the="" passband.="" b)="" measure="" the="" ripple="" in="" the="" passbad.="" ©="" mit/site="" |="" me606="" digital="" signal="" processing="" assignment="" 2="" page="" 4="" of="" 9="" c)="" discuss="" the="" effect="" of="" the="" filter="" length="" on="" the="" ripples="" and="" stopband="" attenuation.="" 5)="" use="" hamming="" and="" hanning="" window="" with="" the="" filter="" impulse="" response="" length,="" m="121," and="" discuss="" the="" effect="" of="" the="" window="" on="" the="" ripples="" and="" stopband="" attenuation.="" 6)="" change="" p="pi/4" and="" repeat="" 1)="" and="" discuss="" the="" effect.="" 1-2="" designing="" a="" bandpass="" fir="" filter="" using="" windowed="" fourier="" series="" approach="" a="" fir="" lowpass="" filter="" can="" be="" converted="" to="" a="" bandpass="" filter="" by="" multiplying="" its="" impulse="" response="" by="" a="" complex="" sinusoidal="" with="" the="" frequency="" of="" the="" center="" frequency="" of="" the="" desired="" bandpass="" filter.="" in="" fact,="" the="" whole="" filter="" band="" shifts="" by="" this="" frequency.="" the="" following="" matlab="" code="" designs="" such="" a="" bandpass="" filter:="" wp="pi/16;" %="" lowpass="" filter="" bandwidth="" m="121;" n="-(M-1)/2:(M-1)/2;" %="" selection="" time="" window="" h0="(wp/pi)*sinc((wp/pi)*n);" %="" truncated="" impulse="" response="" h1="h0.*rectwin(M)';" %="" windowing="" w0="pi/4;" %="" bpf="" center="" frequency="" h="h1.*exp(j*w0*n);" %="" lowpass="" to="" bandpass="" conversion="" figure;="" subplot(211);plot(real(h));ylabel('real="" part="" of="" impulse="" response')="" xlabel('samples')="" subplot(212);plot(imag(h));ylabel('imag="" part="" of="" impulse="" response')="" xlabel('samples')="" %="" spectrum="" fftsize="512;" pxx="20*log10(abs(fft(h,FFTsize)));" fxx="(0:(FFTsize/2)-1)*(pi/(FFTsize/2));" figure;plot(fxx,pxx(1:fftsize/2));ylabel('amplitude="" [db]');xlabel('frequency="" [radian]');grid="" on="" do="" the="" following="" tasks="" and="" plot="" all="" the="" graphs="" in="" your="" report:="" 7)="" run="" the="" above="" program="" and="" plot="" the="" impulse="" response="" and="" the="" amplitude="" spectrum="" of="" the="" filter.="" 8)="" what="" are="" the="" passband="" edges="" p1="" p2.="" measure="" the="" attenuation="" in="" frequency="" response="" at="" these="" frequencies="" and="" compare="" them="" with="" the="" expected="" value="" of="" -6db.="" 9)="" measure="" the="" maximum="" ripple="" in="" the="" passband.="" 10)="" increase="" p="" to="" pi/4="" and="" discuss="" the="" result="" 1-3="" designing="" a="" band-stop="" fir="" filter="" using="" frequency="" sampling="" approach="" in="" this="" section,="" you="" must="" write="" your="" own="" code="" to="" design="" a="" band="" stop="" filter="" using="" the="" knowledge="" you="" gained="" from="" the="" sections="" 1-1="" and="" 1-2="" ©="" mit/site="" |="" me606="" digital="" signal="" processing="" assignment="" 2="" page="" 5="" of="" 9="" write="" a="" code="" to="" design="" a="" band-stop="" filter.="" design="" a="" band-stop="" filter="" by="" having="" the="" following="" block="" diagram="" in="" your="" mind="" the="" spectrum="" mask="" is="" as="" the="" following:="" 11)="" report="" your="" matlab="" code.="" select="" the="" filter="" impulse="" response="" length="" m="121;" 12)="" plot="" the="" frequency="" response,="" |h(ej)|,="" of="" your="" filter="" on="" the="" top="" of="" the="" spectrum="" mask="" in="" a="" single="" plot.="" 13)="" plot="" 20*log10(|h(ej)|)="" of="" your="" filter="" on="" the="" top="" of="" the="" spectrum="" mask="" in="" db="" in="" a="" single="" plot.="" 14)="" measure="" the="" amplitude="" at="" ="[/4," 3/4,="" /2]="" on="" your="" second="" plot.="" 15)="" find="" the="" deepest="" point="" in="" your="" frequency="" response="" in="" db.="" how="" you="" can="" increase="" the="" depth="" of="" the="" stopband?="" 1-4="" designing="" a="" low="" pass="" fir="" filter="" using="" frequency="" sampling="" approach="" in="" the="" frequency="" sampling="" approach,="" we="" design="" an="" amplitude="" response="" in="" the="" frequency="" domain="" and="" find="" the="" impulse="" response="" by="" applying="" ifft="" on="" that="" frequency="" response.="" the="" following="" matlab="" code="" designs="" a="" low="" pass="" fir="" filter="" using="" frequency="" sampling="" approach.="" it="" initially="" designs="" the="" amplitude="" spectrum="" and="" the="" apply="" ifft.="" using="" some="" shifts="" it="" finds="" the="" truncated="" impulse="" response.="" wp="pi/8;" m="121;" fftsize="512;" %="" passband="" frequency="" samples="" np="fix((wp/(2*pi))*FFTsize);" %="" number="" of="" pass="" band="" samples="" ns="FFTsize/2-Np;" %="" number="" of="" stop="" band="" samples="" h1="[ones(1,Np)" zeros(1,ns+1)];="" h="[H1" h1(end:-1:2)];="" %="" sampled="" frequency="" spectrum;="" fxx="(0:(FFTsize/2)-1)*(pi/(FFTsize/2));" figure;plot(fxx,h(1:fftsize/2));="" ylabel('amplitude');="" xlabel('frequency="" [radian]');grid="" on="" bpf="" +="" band-stop="" filter="" x[n]="" y[n]="" -="" +="" 0="" ="" ="" ="" 1="" ="" |h(ej)|="" ©="" mit/site="" |="" me606="" digital="" signal="" processing="" assignment="" 2="" page="" 6="" of="" 9="" %="" finding="" impulse="" response="" by="" truncating="" h1="real(ifft(H));" h0="[" h1(end-(m-1)/2+1:end)="" h1(1:1+(m-1)/2)];="" figure;plot(h0)="" ylabel('impulse="" response')="" xlabel('samples')="" %="" spectrum="" pxx="20*log10(abs(fft(h0,FFTsize)));" fh="figure;plot(fxx,pxx(1:FFTsize/2));hold" on;="" %="" effect="" of="" windowing="" h="h0.*hanning(M)';%" windowing="" %="" spectrum="" pxx="20*log10(abs(fft(h,FFTsize)));" figure(fh);plot(fxx,pxx(1:fftsize/2));grid="" on;="" legend('rectwin','hanning')="" do="" the="" following="" tasks="" and="" plot="" all="" the="" graphs="" in="" your="" report:="" 16)="" run="" the="" above="" program="" and="" plot="" the="" impulse="" response="" and="" the="" amplitude="" spectrum="" of="" the="" filter.="" try="" to="" understand="" what="" the="" program="" does.="" 17)="" use="" the="" above="" program="" as="" your="" base,="" design="" a="" band="" pass="" filter="" that="" passes="" the="" frequencies="" between=""><>
Answered Same DayMay 21, 2021ME606

Answer To: Assignment 2 and Submission Guidelines School School of Information Technology and Engineering...

Kshitij answered on May 30 2021
132 Votes
Ans.1
MATLAB code
wp=pi/8; % lowpass filter bandwidth
M=121;
n=-(M-1)/2:(M-1)/2; % selection time window
h0=(wp/pi)*sinc((wp/pi)*n); % truncated impulse response
h=h0.*rectwin(M)'; % windowing

% h=h0.*hamming(M)';% windowing
% h=h0.*hanning(M)';% windowing
% h=h0.*bartlett(M)';% windowing
% h=h0.*blackman(M)';% windowing
figure;plot(h)
ylabel('Impulse response')
xlabel('Samples')
% spectrum
FFTsize=512;
pxx=20*log10(abs(fft(h,FFTsize)));
fxx=(0:(FFTsize/2)-1)*(pi/(FFTsize/2));
figure;plot(fxx,pxx(1:FFTsize/2));
ylabel('Amplitude[dB]');
xlabel('frequency [Radian]');grid on
1) Plot the impulse response and the amplitude spectrum of the filter:-
2.Frequecy measured at wp= pi/8 = 0.3927, is approximate -5.91 db which is very close to expected
value of -6 DB.
Maximum ripple is -85.45 db at frequency 1.559
3.
The ratio of the transient band to the pass band is approximate 3
4.
When we increases impulse response length m= 255 ,its ripple amplitude increase to -152.5
5.
When we are using Hanning window with the filter impulse response length, M=121
Maximum ripple value we obtaines is -173.7 db
When we are using hamming window with the filter impulse response length ,M=121
Maximum ripple measured value= 122.4
6.
When we have taken wp =pi/4
7.
MATLAB Program
%%
wp=pi/16; % lowpass filter bandwidth
M=121;
n=-(M-1)/2:(M-1)/2; % selection time window
h0=(wp/pi)*sinc((wp/pi)*n); % truncated impulse response
h1=h0.*rectwin(M)'; % windowing
w0=pi/4; % BPF center frequency
h=h1.*exp(j*w0*n); % Lowpass to bandpass conversion
figure;
subplot(211);plot(real(h));ylabel('Real part of impulse response')
xlabel('samples')
subplot(212);plot(imag(h));ylabel('imag part of impulse response')
xlabel('samples')
% spectrum
FFTsize=512;
pxx=20*log10(abs(fft(h,FFTsize)));
fxx=(0:(FFTsize/2)-1)*(pi/(FFTsize/2));
figure;plot(fxx,pxx(1:FFTsize/2));ylabel('Amplitude[dB]');xlabel('frequency
[Radian]');grid on
Ans7.
Ans.8
the passband edges wp1=0.5522 , wp2= 1.019...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here