1 Project 3 Three js Project Overview In this project you will create a unique 3D animated scene composed of Three.js graphic components. The scene should include animation, lighting and multiple...

1 answer below »
In this project, you will create a unique 3D animated scene composed of Three.js graphic components. The scene should include animation, lighting, and multiple objects.


1 Project 3 Three js Project Overview In this project you will create a unique 3D animated scene composed of Three.js graphic components. The scene should include animation, lighting and multiple objects. Requirements: 1. Using Three.js create a unique 3D animated scene. The scene has the following specifications: a. Size: minimum of 640x480 b. Includes at least 6 different shapes c. Uses multiple lighting effects d. Includes radio buttons, slider bars or other widgets to turn on or off certain components of the animation. 2. Use Three.js 3. All JavaScript source code should be written using Google JavaScript style guide.( http://google.github.io/styleguide/jsguide.html) 4. Prepare, conduct and document a test plan verifying your application is working as expected. This plan should include a test matrix listing each method you tested, how you tested it, and the results of testing Deliverables: 1. All JavaScript source code used for this project. Code should adhere to the Google Javascript style guide. 2. Word or PDF file demonstrating with clearly labeled screen captures and associated well-written descriptions, the successful execution of your 3D Three.js animated scene. The document should be well-written, well-organized, includes the test plan, include page numbers, captions for all screen captures, and a title page including your name, class, section number and date. References should be included for all sources used and formatted in APA style. Grading guidelines: Attribute Meets Design 20 points Methods used to isolate functionality (10 points) Code is efficient without sacrificing readability and understanding. (5 points) Code can easily be used and maintained. (5 points) Functionality 50 points Uses Three.js create a unique 3D animated scene. (5 points) Scene is at least 640x480. (5 points) 2 Includes at least 6 different shapes. (10 points) Uses multiple lighting effects. (10 points) Includes radio buttons, slider bars or other widgets to turn on or off certain components of the animation. (10 points) Uses Three.js (10 points) Testing 10 points Prepares, conducts and documents a test plan verifying the application is functioning properly. (10 points) Documentation and deliverables 20 points Submits all JavaScript source code used for this project. (5 points) Code adheres to the Google JavaScript style guide. (5 points) Submits Word or PDF file demonstrating with clearly labeled screen captures and associated well-written descriptions, the successful execution of your 3D Three.js scene. (5 points) The document is well-written, well-organized, includes the test plan, includes page numbers, captions for all screen captures, and a title page including your name, class, section number and date. References are included for all sources used and formatted in APA style. (5 points) 1. Overview The project draws three simple images on a frame then applies translations, rotations, and scaling to the images. The different effects are done automatically with a timer that moves to the next frame. The effects are additive. There are two java classes in the project. Project1GUI.java is the main class the runs the logic and creates the GUI. The second class, Project1_Images.java creates the 2d representations of the images. In the second class, there are currently 3 images stored. The images are stored in 2d arrays. When the getImage() method is called, the parameter determines which image is returned. Based on the parameter provided a new BufferedImage is created using the 2d array. All of the images are have two colors. The first image is a horizontal line, the second is a vertical line, and the third is a checkerboard design. The method goes through the 2d array and assigns a color to the BufferedImage at the same index with the setRGB(x, y, pixelColor) method. The BufferedImage is used in the paintComponent() method of Project1GUI.java Project1GUI.java’s main method creates the GUI. The paintComplonent() method is overridden. The method determines the values for which transformations should be done by examining the frame index. The frame index cycles through 0 – 6 based on the timer. The first two cases, frames zero and one, set the images to the default positions, with no translations, no rotation and no scaling. The third case, frame two, translates the images to the left by 5 pixels. The next case translates the images up 7 pixels. The next case rotates the images 45 degrees counterclockwise. The next case rotates the images 90 clockwise. The next case scales the image in the x direction by 2.0 and the y direction by 0.5. The frame index then loops back to frame zero. 2. Execution There are 6 frames of animation for this program. The first two are identical. The third frame translates the images 5 pixels to the left. Figure 1. The first two frames of animation. Figure 2. The third frame of animation. The fourth frame translates the images 7 pixels up. The fifth frame rotates the image 45 degrees counterclockwise. Figure 3. The fourth frame of animation. Figure 4. The fifth frame of animation. The sixth frame rotates the image clockwise 90 degrees. For a total of a 45 degree clockwise rotation. The final frame of animation scales the images by 2.0 in the x direction and 0.5 in the y direction. Figure 5. The sixth frame of animation. 3. Testing The first step in testing was to take the template provided that had two duplicate images and change it to include a new image and increase the size of the images from 10 pixels to 25 pixels. The first step was to change the constants from 10 to 25. Then a new 2d array was created that used loops to hold the data and represent a horizontal line. A new method was created so that the original could still be used. The new method returned the new test image as a BufferedImage. The second call to drawImage() in the paintComponent() method was changed to use the new BufferedImage instead of a duplicate of the original image. Figure 6. The final frame of animation. The next thing to test was all three custom images. Figure 7. The new image next to the old image. Figure 8. The custom images added to the GUI. Test Case Input Expected Output Actual Output Result Translation Change translateX to -5 Objects move to the left slightly Images move to the left Pass Rotation counterclockwise Change rotation += 45*Math.PI / 180.0; Images rotate counterclockwise and point at the top left corner Images rotate counterclockwise Pass Rotation clockwise Add new case statement with rotation += (- 90*Math.PI / 180); Images rotate clockwise and point at top right corner. Images rotate clockwise Pass Scale x and y Add new case statement with scaleX += 1.0; and scaleY -= 0.5; Images get wider and shorter. Horizontal bar becomes longer, vertical bar becomes shorter Pass Figure 9. Test cases for the program.
Answered Same DayApr 26, 2021

Answer To: 1 Project 3 Three js Project Overview In this project you will create a unique 3D animated scene...

Mohd answered on Apr 29 2021
133 Votes
completed solution/code/index.html




Stop Animation Cylinder


Start Animation Cylinder




completed solution/code/js/three.js
(function (global, factory) {
    typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
    typeof define === 'function' && define.amd ? define(['exports'], factory) :
    (global = global || self, factory(global.THREE = {}));
}(this, (function (exports) { 'use strict';
    // Polyfills
    if ( Number.EPSILON === undefined ) {
        Number.EPSILON = Math.pow( 2, - 52 );
    }
    if ( Number.isInteger === undefined ) {
        // Missing in IE
        // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
        Number.isInteger = function ( value ) {
            return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;
        };
    }
    //
    if ( Math.sign === undefined ) {
        // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
        Math.sign = function ( x ) {
            return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
        };
    }
    if ( 'name' in Function.prototype === false ) {
        // Missing in IE
        // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
        Object.defineProperty( Function.prototype, 'name', {
            get: function () {
                return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];
            }
        } );
    }
    if ( Object.assign === undefined ) {
        // Missing in IE
        // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
        Object.assign = function ( target ) {
            if ( target === undefined || target === null ) {
                throw new TypeError( 'Cannot convert undefined or null to object' );
            }
            var output = Object( target );
            for ( var index = 1; index < arguments.length; index ++ ) {
                var source = arguments[ index ];
                if ( source !== undefined && source !== null ) {
                    for ( var nextKey in source ) {
                        if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {
                            output[ nextKey ] = source[ nextKey ];
                        }
                    }
                }
            }
            return output;
        };
    }
    var REVISION = '116dev';
    var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 };
    var TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
    var CullFaceNone = 0;
    var CullFaceBack = 1;
    var CullFaceFront = 2;
    var CullFaceFrontBack = 3;
    var FrontFaceDirectionCW = 0;
    var FrontFaceDirectionCCW = 1;
    var BasicShadowMap = 0;
    var PCFShadowMap = 1;
    var PCFSoftShadowMap = 2;
    var VSMShadowMap = 3;
    var FrontSide = 0;
    var BackSide = 1;
    var DoubleSide = 2;
    var FlatShading = 1;
    var SmoothShading = 2;
    var NoBlending = 0;
    var NormalBlending = 1;
    var AdditiveBlending = 2;
    var SubtractiveBlending = 3;
    var MultiplyBlending = 4;
    var CustomBlending = 5;
    var AddEquation = 100;
    var SubtractEquation = 101;
    var ReverseSubtractEquation = 102;
    var MinEquation = 103;
    var MaxEquation = 104;
    var ZeroFactor = 200;
    var OneFactor = 201;
    var SrcColorFactor = 202;
    var OneMinusSrcColorFactor = 203;
    var SrcAlphaFactor = 204;
    var OneMinusSrcAlphaFactor = 205;
    var DstAlphaFactor = 206;
    var OneMinusDstAlphaFactor = 207;
    var DstColorFactor = 208;
    var OneMinusDstColorFactor = 209;
    var SrcAlphaSaturateFactor = 210;
    var NeverDepth = 0;
    var AlwaysDepth = 1;
    var LessDepth = 2;
    var LessEqualDepth = 3;
    var EqualDepth = 4;
    var GreaterEqualDepth = 5;
    var GreaterDepth = 6;
    var NotEqualDepth = 7;
    var MultiplyOperation = 0;
    var MixOperation = 1;
    var AddOperation = 2;
    var NoToneMapping = 0;
    var LinearToneMapping = 1;
    var ReinhardToneMapping = 2;
    var Uncharted2ToneMapping = 3;
    var CineonToneMapping = 4;
    var ACESFilmicToneMapping = 5;
    var UVMapping = 300;
    var CubeReflectionMapping = 301;
    var CubeRefractionMapping = 302;
    var EquirectangularReflectionMapping = 303;
    var EquirectangularRefractionMapping = 304;
    var SphericalReflectionMapping = 305;
    var CubeUVReflectionMapping = 306;
    var CubeUVRefractionMapping = 307;
    var RepeatWrapping = 1000;
    var ClampToEdgeWrapping = 1001;
    var MirroredRepeatWrapping = 1002;
    var NearestFilter = 1003;
    var NearestMipmapNearestFilter = 1004;
    var NearestMipMapNearestFilter = 1004;
    var NearestMipmapLinearFilter = 1005;
    var NearestMipMapLinearFilter = 1005;
    var LinearFilter = 1006;
    var LinearMipmapNearestFilter = 1007;
    var LinearMipMapNearestFilter = 1007;
    var LinearMipmapLinearFilter = 1008;
    var LinearMipMapLinearFilter = 1008;
    var UnsignedByteType = 1009;
    var ByteType = 1010;
    var ShortType = 1011;
    var UnsignedShortType = 1012;
    var IntType = 1013;
    var UnsignedIntType = 1014;
    var FloatType = 1015;
    var HalfFloatType = 1016;
    var UnsignedShort4444Type = 1017;
    var UnsignedShort5551Type = 1018;
    var UnsignedShort565Type = 1019;
    var UnsignedInt248Type = 1020;
    var AlphaFormat = 1021;
    var RGBFormat = 1022;
    var RGBAFormat = 1023;
    var LuminanceFormat = 1024;
    var LuminanceAlphaFormat = 1025;
    var RGBEFormat = RGBAFormat;
    var DepthFormat = 1026;
    var DepthStencilFormat = 1027;
    var RedFormat = 1028;
    var RedIntegerFormat = 1029;
    var RGFormat = 1030;
    var RGIntegerFormat = 1031;
    var RGBIntegerFormat = 1032;
    var RGBAIntegerFormat = 1033;
    var RGB_S3TC_DXT1_Format = 33776;
    var RGBA_S3TC_DXT1_Format = 33777;
    var RGBA_S3TC_DXT3_Format = 33778;
    var RGBA_S3TC_DXT5_Format = 33779;
    var RGB_PVRTC_4BPPV1_Format = 35840;
    var RGB_PVRTC_2BPPV1_Format = 35841;
    var RGBA_PVRTC_4BPPV1_Format = 35842;
    var RGBA_PVRTC_2BPPV1_Format = 35843;
    var RGB_ETC1_Format = 36196;
    var RGB_ETC2_Format = 37492;
    var RGBA_ETC2_EAC_Format = 37496;
    var RGBA_ASTC_4x4_Format = 37808;
    var RGBA_ASTC_5x4_Format = 37809;
    var RGBA_ASTC_5x5_Format = 37810;
    var RGBA_ASTC_6x5_Format = 37811;
    var RGBA_ASTC_6x6_Format = 37812;
    var RGBA_ASTC_8x5_Format = 37813;
    var RGBA_ASTC_8x6_Format = 37814;
    var RGBA_ASTC_8x8_Format = 37815;
    var RGBA_ASTC_10x5_Format = 37816;
    var RGBA_ASTC_10x6_Format = 37817;
    var RGBA_ASTC_10x8_Format = 37818;
    var RGBA_ASTC_10x10_Format = 37819;
    var RGBA_ASTC_12x10_Format = 37820;
    var RGBA_ASTC_12x12_Format = 37821;
    var RGBA_BPTC_Format = 36492;
    var SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
    var SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
    var SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
    var SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
    var SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
    var SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
    var SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
    var SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
    var SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
    var SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
    var SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
    var SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
    var SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
    var SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
    var LoopOnce = 2200;
    var LoopRepeat = 2201;
    var LoopPingPong = 2202;
    var InterpolateDiscrete = 2300;
    var InterpolateLinear = 2301;
    var InterpolateSmooth = 2302;
    var ZeroCurvatureEnding = 2400;
    var ZeroSlopeEnding = 2401;
    var WrapAroundEnding = 2402;
    var NormalAnimationBlendMode = 2500;
    var AdditiveAnimationBlendMode = 2501;
    var TrianglesDrawMode = 0;
    var TriangleStripDrawMode = 1;
    var TriangleFanDrawMode = 2;
    var LinearEncoding = 3000;
    var sRGBEncoding = 3001;
    var GammaEncoding = 3007;
    var RGBEEncoding = 3002;
    var LogLuvEncoding = 3003;
    var RGBM7Encoding = 3004;
    var RGBM16Encoding = 3005;
    var RGBDEncoding = 3006;
    var BasicDepthPacking = 3200;
    var RGBADepthPacking = 3201;
    var TangentSpaceNormalMap = 0;
    var ObjectSpaceNormalMap = 1;
    var ZeroStencilOp = 0;
    var KeepStencilOp = 7680;
    var ReplaceStencilOp = 7681;
    var IncrementStencilOp = 7682;
    var DecrementStencilOp = 7683;
    var IncrementWrapStencilOp = 34055;
    var DecrementWrapStencilOp = 34056;
    var InvertStencilOp = 5386;
    var NeverStencilFunc = 512;
    var LessStencilFunc = 513;
    var EqualStencilFunc = 514;
    var LessEqualStencilFunc = 515;
    var GreaterStencilFunc = 516;
    var NotEqualStencilFunc = 517;
    var GreaterEqualStencilFunc = 518;
    var AlwaysStencilFunc = 519;
    var StaticDrawUsage = 35044;
    var DynamicDrawUsage = 35048;
    var StreamDrawUsage = 35040;
    var StaticReadUsage = 35045;
    var DynamicReadUsage = 35049;
    var StreamReadUsage = 35041;
    var StaticCopyUsage = 35046;
    var DynamicCopyUsage = 35050;
    var StreamCopyUsage = 35042;
    /**
     * https://github.com/mrdoob/eventdispatcher.js/
     */
    function EventDispatcher() {}
    Object.assign( EventDispatcher.prototype, {
        addEventListener: function ( type, listener ) {
            if ( this._listeners === undefined ) { this._listeners = {}; }
            var listeners = this._listeners;
            if ( listeners[ type ] === undefined ) {
                listeners[ type ] = [];
            }
            if ( listeners[ type ].indexOf( listener ) === - 1 ) {
                listeners[ type ].push( listener );
            }
        },
        hasEventListener: function ( type, listener ) {
            if ( this._listeners === undefined ) { return false; }
            var listeners = this._listeners;
            return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
        },
        removeEventListener: function ( type, listener ) {
            if ( this._listeners === undefined ) { return; }
            var listeners = this._listeners;
            var listenerArray = listeners[ type ];
            if ( listenerArray !== undefined ) {
                var index = listenerArray.indexOf( listener );
                if ( index !== - 1 ) {
                    listenerArray.splice( index, 1 );
                }
            }
        },
        dispatchEvent: function ( event ) {
            if ( this._listeners === undefined ) { return; }
            var listeners = this._listeners;
            var listenerArray = listeners[ event.type ];
            if ( listenerArray !== undefined ) {
                event.target = this;
                // Make a copy, in case listeners are removed while iterating.
                var array = listenerArray.slice( 0 );
                for ( var i = 0, l = array.length; i < l; i ++ ) {
                    array[ i ].call( this, event );
                }
            }
        }
    } );
    /**
     * @author alteredq / http://alteredqualia.com/
     * @author mrdoob / http://mrdoob.com/
     * @author WestLangley / http://github.com/WestLangley
     * @author thezwap
     */
    var _lut = [];
    for ( var i = 0; i < 256; i ++ ) {
        _lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );
    }
    var MathUtils = {
        DEG2RAD: Math.PI / 180,
        RAD2DEG: 180 / Math.PI,
        generateUUID: function () {
            // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
            var d0 = Math.random() * 0xffffffff | 0;
            var d1 = Math.random() * 0xffffffff | 0;
            var d2 = Math.random() * 0xffffffff | 0;
            var d3 = Math.random() * 0xffffffff | 0;
            var uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
                _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
                _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
                _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];
            // .toUpperCase() here flattens concatenated strings to save heap memory space.
            return uuid.toUpperCase();
        },
        clamp: function ( value, min, max ) {
            return Math.max( min, Math.min( max, value ) );
        },
        // compute euclidian modulo of m % n
        // https://en.wikipedia.org/wiki/Modulo_operation
        euclideanModulo: function ( n, m ) {
            return ( ( n % m ) + m ) % m;
        },
        // Linear mapping from range to range
        mapLinear: function ( x, a1, a2, b1, b2 ) {
            return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
        },
        // https://en.wikipedia.org/wiki/Linear_interpolation
        lerp: function ( x, y, t ) {
            return ( 1 - t ) * x + t * y;
        },
        // http://en.wikipedia.org/wiki/Smoothstep
        smoothstep: function ( x, min, max ) {
            if ( x <= min ) { return 0; }
            if ( x >= max ) { return 1; }
            x = ( x - min ) / ( max - min );
            return x * x * ( 3 - 2 * x );
        },
        smootherstep: function ( x, min, max ) {
            if ( x <= min ) { return 0; }
            if ( x >= max ) { return 1; }
            x = ( x - min ) / ( max - min );
            return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
        },
        // Random integer from interval
        randInt: function ( low, high ) {
            return low + Math.floor( Math.random() * ( high - low + 1 ) );
        },
        // Random float from interval
        randFloat: function ( low, high ) {
            return low + Math.random() * ( high - low );
        },
        // Random float from <-range/2, range/2> interval
        randFloatSpread: function ( range ) {
            return range * ( 0.5 - Math.random() );
        },
        degToRad: function ( degrees ) {
            return degrees * MathUtils.DEG2RAD;
        },
        radToDeg: function ( radians ) {
            return radians * MathUtils.RAD2DEG;
        },
        isPowerOfTwo: function ( value ) {
            return ( value & ( value - 1 ) ) === 0 && value !== 0;
        },
        ceilPowerOfTwo: function ( value ) {
            return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );
        },
        floorPowerOfTwo: function ( value ) {
            return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );
        },
        setQuaternionFromProperEuler: function ( q, a, b, c, order ) {
            // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
            // rotations are applied to the axes in the order specified by 'order'
            // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
            // angles are in radians
            var cos = Math.cos;
            var sin = Math.sin;
            var c2 = cos( b / 2 );
            var s2 = sin( b / 2 );
            var c13 = cos( ( a + c ) / 2 );
            var s13 = sin( ( a + c ) / 2 );
            var c1_3 = cos( ( a - c ) / 2 );
            var s1_3 = sin( ( a - c ) / 2 );
            var c3_1 = cos( ( c - a ) / 2 );
            var s3_1 = sin( ( c - a ) / 2 );
            switch ( order ) {
                case 'XYX':
                    q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
                    break;
                case 'YZY':
                    q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
                    break;
                case 'ZXZ':
                    q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
                    break;
                case 'XZX':
                    q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
                    break;
                case 'YXY':
                    q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
                    break;
                case 'ZYZ':
                    q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
                    break;
                default:
                    console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order );
            }
        }
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author philogb / http://blog.thejit.org/
     * @author egraether / http://egraether.com/
     * @author zz85 / http://www.lab4games.net/zz85/blog
     */
    function Vector2( x, y ) {
        this.x = x || 0;
        this.y = y || 0;
    }
    Object.defineProperties( Vector2.prototype, {
        "width": {
            get: function () {
                return this.x;
            },
            set: function ( value ) {
                this.x = value;
            }
        },
        "height": {
            get: function () {
                return this.y;
            },
            set: function ( value ) {
                this.y = value;
            }
        }
    } );
    Object.assign( Vector2.prototype, {
        isVector2: true,
        set: function ( x, y ) {
            this.x = x;
            this.y = y;
            return this;
        },
        setScalar: function ( scalar ) {
            this.x = scalar;
            this.y = scalar;
            return this;
        },
        setX: function ( x ) {
            this.x = x;
            return this;
        },
        setY: function ( y ) {
            this.y = y;
            return this;
        },
        setComponent: function ( index, value ) {
            switch ( index ) {
                case 0: this.x = value; break;
                case 1: this.y = value; break;
                default: throw new Error( 'index is out of range: ' + index );
            }
            return this;
        },
        getComponent: function ( index ) {
            switch ( index ) {
                case 0: return this.x;
                case 1: return this.y;
                default: throw new Error( 'index is out of range: ' + index );
            }
        },
        clone: function () {
            return new this.constructor( this.x, this.y );
        },
        copy: function ( v ) {
            this.x = v.x;
            this.y = v.y;
            return this;
        },
        add: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
                return this.addVectors( v, w );
            }
            this.x += v.x;
            this.y += v.y;
            return this;
        },
        addScalar: function ( s ) {
            this.x += s;
            this.y += s;
            return this;
        },
        addVectors: function ( a, b ) {
            this.x = a.x + b.x;
            this.y = a.y + b.y;
            return this;
        },
        addScaledVector: function ( v, s ) {
            this.x += v.x * s;
            this.y += v.y * s;
            return this;
        },
        sub: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
                return this.subVectors( v, w );
            }
            this.x -= v.x;
            this.y -= v.y;
            return this;
        },
        subScalar: function ( s ) {
            this.x -= s;
            this.y -= s;
            return this;
        },
        subVectors: function ( a, b ) {
            this.x = a.x - b.x;
            this.y = a.y - b.y;
            return this;
        },
        multiply: function ( v ) {
            this.x *= v.x;
            this.y *= v.y;
            return this;
        },
        multiplyScalar: function ( scalar ) {
            this.x *= scalar;
            this.y *= scalar;
            return this;
        },
        divide: function ( v ) {
            this.x /= v.x;
            this.y /= v.y;
            return this;
        },
        divideScalar: function ( scalar ) {
            return this.multiplyScalar( 1 / scalar );
        },
        applyMatrix3: function ( m ) {
            var x = this.x, y = this.y;
            var e = m.elements;
            this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
            this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
            return this;
        },
        min: function ( v ) {
            this.x = Math.min( this.x, v.x );
            this.y = Math.min( this.y, v.y );
            return this;
        },
        max: function ( v ) {
            this.x = Math.max( this.x, v.x );
            this.y = Math.max( this.y, v.y );
            return this;
        },
        clamp: function ( min, max ) {
            // assumes min < max, componentwise
            this.x = Math.max( min.x, Math.min( max.x, this.x ) );
            this.y = Math.max( min.y, Math.min( max.y, this.y ) );
            return this;
        },
        clampScalar: function ( minVal, maxVal ) {
            this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
            this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
            return this;
        },
        clampLength: function ( min, max ) {
            var length = this.length();
            return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
        },
        floor: function () {
            this.x = Math.floor( this.x );
            this.y = Math.floor( this.y );
            return this;
        },
        ceil: function () {
            this.x = Math.ceil( this.x );
            this.y = Math.ceil( this.y );
            return this;
        },
        round: function () {
            this.x = Math.round( this.x );
            this.y = Math.round( this.y );
            return this;
        },
        roundToZero: function () {
            this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
            this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
            return this;
        },
        negate: function () {
            this.x = - this.x;
            this.y = - this.y;
            return this;
        },
        dot: function ( v ) {
            return this.x * v.x + this.y * v.y;
        },
        cross: function ( v ) {
            return this.x * v.y - this.y * v.x;
        },
        lengthSq: function () {
            return this.x * this.x + this.y * this.y;
        },
        length: function () {
            return Math.sqrt( this.x * this.x + this.y * this.y );
        },
        manhattanLength: function () {
            return Math.abs( this.x ) + Math.abs( this.y );
        },
        normalize: function () {
            return this.divideScalar( this.length() || 1 );
        },
        angle: function () {
            // computes the angle in radians with respect to the positive x-axis
            var angle = Math.atan2( - this.y, - this.x ) + Math.PI;
            return angle;
        },
        distanceTo: function ( v ) {
            return Math.sqrt( this.distanceToSquared( v ) );
        },
        distanceToSquared: function ( v ) {
            var dx = this.x - v.x, dy = this.y - v.y;
            return dx * dx + dy * dy;
        },
        manhattanDistanceTo: function ( v ) {
            return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
        },
        setLength: function ( length ) {
            return this.normalize().multiplyScalar( length );
        },
        lerp: function ( v, alpha ) {
            this.x += ( v.x - this.x ) * alpha;
            this.y += ( v.y - this.y ) * alpha;
            return this;
        },
        lerpVectors: function ( v1, v2, alpha ) {
            return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
        },
        equals: function ( v ) {
            return ( ( v.x === this.x ) && ( v.y === this.y ) );
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this.x = array[ offset ];
            this.y = array[ offset + 1 ];
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            array[ offset ] = this.x;
            array[ offset + 1 ] = this.y;
            return array;
        },
        fromBufferAttribute: function ( attribute, index, offset ) {
            if ( offset !== undefined ) {
                console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );
            }
            this.x = attribute.getX( index );
            this.y = attribute.getY( index );
            return this;
        },
        rotateAround: function ( center, angle ) {
            var c = Math.cos( angle ), s = Math.sin( angle );
            var x = this.x - center.x;
            var y = this.y - center.y;
            this.x = x * c - y * s + center.x;
            this.y = x * s + y * c + center.y;
            return this;
        },
        random: function () {
            this.x = Math.random();
            this.y = Math.random();
            return this;
        }
    } );
    /**
     * @author alteredq / http://alteredqualia.com/
     * @author WestLangley / http://github.com/WestLangley
     * @author bhouston / http://clara.io
     * @author tschw
     */
    function Matrix3() {
        this.elements = [
            1, 0, 0,
            0, 1, 0,
            0, 0, 1
        ];
        if ( arguments.length > 0 ) {
            console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
        }
    }
    Object.assign( Matrix3.prototype, {
        isMatrix3: true,
        set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
            var te = this.elements;
            te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
            te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
            te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
            return this;
        },
        identity: function () {
            this.set(
                1, 0, 0,
                0, 1, 0,
                0, 0, 1
            );
            return this;
        },
        clone: function () {
            return new this.constructor().fromArray( this.elements );
        },
        copy: function ( m ) {
            var te = this.elements;
            var me = m.elements;
            te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
            te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
            te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
            return this;
        },
        extractBasis: function ( xAxis, yAxis, zAxis ) {
            xAxis.setFromMatrix3Column( this, 0 );
            yAxis.setFromMatrix3Column( this, 1 );
            zAxis.setFromMatrix3Column( this, 2 );
            return this;
        },
        setFromMatrix4: function ( m ) {
            var me = m.elements;
            this.set(
                me[ 0 ], me[ 4 ], me[ 8 ],
                me[ 1 ], me[ 5 ], me[ 9 ],
                me[ 2 ], me[ 6 ], me[ 10 ]
            );
            return this;
        },
        multiply: function ( m ) {
            return this.multiplyMatrices( this, m );
        },
        premultiply: function ( m ) {
            return this.multiplyMatrices( m, this );
        },
        multiplyMatrices: function ( a, b ) {
            var ae = a.elements;
            var be = b.elements;
            var te = this.elements;
            var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
            var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
            var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
            var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
            var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
            var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
            te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
            te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
            te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
            te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
            te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
            te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
            te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
            te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
            te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
            return this;
        },
        multiplyScalar: function ( s ) {
            var te = this.elements;
            te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
            te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
            te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
            return this;
        },
        determinant: function () {
            var te = this.elements;
            var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
                d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
                g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
            return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
        },
        getInverse: function ( matrix, throwOnDegenerate ) {
            if ( throwOnDegenerate !== undefined ) {
                console.warn( "THREE.Matrix3: .getInverse() can no longer be configured to throw on degenerate." );
            }
            var me = matrix.elements,
                te = this.elements,
                n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
                n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
                n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
                t11 = n33 * n22 - n32 * n23,
                t12 = n32 * n13 - n33 * n12,
                t13 = n23 * n12 - n22 * n13,
                det = n11 * t11 + n21 * t12 + n31 * t13;
            if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); }
            var detInv = 1 / det;
            te[ 0 ] = t11 * detInv;
            te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
            te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
            te[ 3 ] = t12 * detInv;
            te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
            te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
            te[ 6 ] = t13 * detInv;
            te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
            te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
            return this;
        },
        transpose: function () {
            var tmp, m = this.elements;
            tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
            tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
            tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
            return this;
        },
        getNormalMatrix: function ( matrix4 ) {
            return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
        },
        transposeIntoArray: function ( r ) {
            var m = this.elements;
            r[ 0 ] = m[ 0 ];
            r[ 1 ] = m[ 3 ];
            r[ 2 ] = m[ 6 ];
            r[ 3 ] = m[ 1 ];
            r[ 4 ] = m[ 4 ];
            r[ 5 ] = m[ 7 ];
            r[ 6 ] = m[ 2 ];
            r[ 7 ] = m[ 5 ];
            r[ 8 ] = m[ 8 ];
            return this;
        },
        setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {
            var c = Math.cos( rotation );
            var s = Math.sin( rotation );
            this.set(
                sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
                - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
                0, 0, 1
            );
        },
        scale: function ( sx, sy ) {
            var te = this.elements;
            te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;
            te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;
            return this;
        },
        rotate: function ( theta ) {
            var c = Math.cos( theta );
            var s = Math.sin( theta );
            var te = this.elements;
            var a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];
            var a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];
            te[ 0 ] = c * a11 + s * a21;
            te[ 3 ] = c * a12 + s * a22;
            te[ 6 ] = c * a13 + s * a23;
            te[ 1 ] = - s * a11 + c * a21;
            te[ 4 ] = - s * a12 + c * a22;
            te[ 7 ] = - s * a13 + c * a23;
            return this;
        },
        translate: function ( tx, ty ) {
            var te = this.elements;
            te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];
            te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];
            return this;
        },
        equals: function ( matrix ) {
            var te = this.elements;
            var me = matrix.elements;
            for ( var i = 0; i < 9; i ++ ) {
                if ( te[ i ] !== me[ i ] ) { return false; }
            }
            return true;
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            for ( var i = 0; i < 9; i ++ ) {
                this.elements[ i ] = array[ i + offset ];
            }
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            var te = this.elements;
            array[ offset ] = te[ 0 ];
            array[ offset + 1 ] = te[ 1 ];
            array[ offset + 2 ] = te[ 2 ];
            array[ offset + 3 ] = te[ 3 ];
            array[ offset + 4 ] = te[ 4 ];
            array[ offset + 5 ] = te[ 5 ];
            array[ offset + 6 ] = te[ 6 ];
            array[ offset + 7 ] = te[ 7 ];
            array[ offset + 8 ] = te[ 8 ];
            return array;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     * @author szimek / https://github.com/szimek/
     */
    var _canvas;
    var ImageUtils = {
        getDataURL: function ( image ) {
            var canvas;
            if ( typeof HTMLCanvasElement == 'undefined' ) {
                return image.src;
            } else if ( image instanceof HTMLCanvasElement ) {
                canvas = image;
            } else {
                if ( _canvas === undefined ) { _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); }
                _canvas.width = image.width;
                _canvas.height = image.height;
                var context = _canvas.getContext( '2d' );
                if ( image instanceof ImageData ) {
                    context.putImageData( image, 0, 0 );
                } else {
                    context.drawImage( image, 0, 0, image.width, image.height );
                }
                canvas = _canvas;
            }
            if ( canvas.width > 2048 || canvas.height > 2048 ) {
                return canvas.toDataURL( 'image/jpeg', 0.6 );
            } else {
                return canvas.toDataURL( 'image/png' );
            }
        }
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     * @author szimek / https://github.com/szimek/
     */
    var textureId = 0;
    function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
        Object.defineProperty( this, 'id', { value: textureId ++ } );
        this.uuid = MathUtils.generateUUID();
        this.name = '';
        this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
        this.mipmaps = [];
        this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;
        this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
        this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;
        this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
        this.minFilter = minFilter !== undefined ? minFilter : LinearMipmapLinearFilter;
        this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
        this.format = format !== undefined ? format : RGBAFormat;
        this.internalFormat = null;
        this.type = type !== undefined ? type : UnsignedByteType;
        this.offset = new Vector2( 0, 0 );
        this.repeat = new Vector2( 1, 1 );
        this.center = new Vector2( 0, 0 );
        this.rotation = 0;
        this.matrixAutoUpdate = true;
        this.matrix = new Matrix3();
        this.generateMipmaps = true;
        this.premultiplyAlpha = false;
        this.flipY = true;
        this.unpackAlignment = 4;    // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
        // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
        //
        // Also changing the encoding after already used by a Material will not automatically make the Material
        // update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
        this.encoding = encoding !== undefined ? encoding : LinearEncoding;
        this.version = 0;
        this.onUpdate = null;
    }
    Texture.DEFAULT_IMAGE = undefined;
    Texture.DEFAULT_MAPPING = UVMapping;
    Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
        constructor: Texture,
        isTexture: true,
        updateMatrix: function () {
            this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( source ) {
            this.name = source.name;
            this.image = source.image;
            this.mipmaps = source.mipmaps.slice( 0 );
            this.mapping = source.mapping;
            this.wrapS = source.wrapS;
            this.wrapT = source.wrapT;
            this.magFilter = source.magFilter;
            this.minFilter = source.minFilter;
            this.anisotropy = source.anisotropy;
            this.format = source.format;
            this.internalFormat = source.internalFormat;
            this.type = source.type;
            this.offset.copy( source.offset );
            this.repeat.copy( source.repeat );
            this.center.copy( source.center );
            this.rotation = source.rotation;
            this.matrixAutoUpdate = source.matrixAutoUpdate;
            this.matrix.copy( source.matrix );
            this.generateMipmaps = source.generateMipmaps;
            this.premultiplyAlpha = source.premultiplyAlpha;
            this.flipY = source.flipY;
            this.unpackAlignment = source.unpackAlignment;
            this.encoding = source.encoding;
            return this;
        },
        toJSON: function ( meta ) {
            var isRootObject = ( meta === undefined || typeof meta === 'string' );
            if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {
                return meta.textures[ this.uuid ];
            }
            var output = {
                metadata: {
                    version: 4.5,
                    type: 'Texture',
                    generator: 'Texture.toJSON'
                },
                uuid: this.uuid,
                name: this.name,
                mapping: this.mapping,
                repeat: [ this.repeat.x, this.repeat.y ],
                offset: [ this.offset.x, this.offset.y ],
                center: [ this.center.x, this.center.y ],
                rotation: this.rotation,
                wrap: [ this.wrapS, this.wrapT ],
                format: this.format,
                type: this.type,
                encoding: this.encoding,
                minFilter: this.minFilter,
                magFilter: this.magFilter,
                anisotropy: this.anisotropy,
                flipY: this.flipY,
                premultiplyAlpha: this.premultiplyAlpha,
                unpackAlignment: this.unpackAlignment
            };
            if ( this.image !== undefined ) {
                // TODO: Move to THREE.Image
                var image = this.image;
                if ( image.uuid === undefined ) {
                    image.uuid = MathUtils.generateUUID(); // UGH
                }
                if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {
                    var url;
                    if ( Array.isArray( image ) ) {
                        // process array of images e.g. CubeTexture
                        url = [];
                        for ( var i = 0, l = image.length; i < l; i ++ ) {
                            url.push( ImageUtils.getDataURL( image[ i ] ) );
                        }
                    } else {
                        // process single image
                        url = ImageUtils.getDataURL( image );
                    }
                    meta.images[ image.uuid ] = {
                        uuid: image.uuid,
                        url: url
                    };
                }
                output.image = image.uuid;
            }
            if ( ! isRootObject ) {
                meta.textures[ this.uuid ] = output;
            }
            return output;
        },
        dispose: function () {
            this.dispatchEvent( { type: 'dispose' } );
        },
        transformUv: function ( uv ) {
            if ( this.mapping !== UVMapping ) { return uv; }
            uv.applyMatrix3( this.matrix );
            if ( uv.x < 0 || uv.x > 1 ) {
                switch ( this.wrapS ) {
                    case RepeatWrapping:
                        uv.x = uv.x - Math.floor( uv.x );
                        break;
                    case ClampToEdgeWrapping:
                        uv.x = uv.x < 0 ? 0 : 1;
                        break;
                    case MirroredRepeatWrapping:
                        if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
                            uv.x = Math.ceil( uv.x ) - uv.x;
                        } else {
                            uv.x = uv.x - Math.floor( uv.x );
                        }
                        break;
                }
            }
            if ( uv.y < 0 || uv.y > 1 ) {
                switch ( this.wrapT ) {
                    case RepeatWrapping:
                        uv.y = uv.y - Math.floor( uv.y );
                        break;
                    case ClampToEdgeWrapping:
                        uv.y = uv.y < 0 ? 0 : 1;
                        break;
                    case MirroredRepeatWrapping:
                        if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
                            uv.y = Math.ceil( uv.y ) - uv.y;
                        } else {
                            uv.y = uv.y - Math.floor( uv.y );
                        }
                        break;
                }
            }
            if ( this.flipY ) {
                uv.y = 1 - uv.y;
            }
            return uv;
        }
    } );
    Object.defineProperty( Texture.prototype, "needsUpdate", {
        set: function ( value ) {
            if ( value === true ) { this.version ++; }
        }
    } );
    /**
     * @author supereggbert / http://www.paulbrunt.co.uk/
     * @author philogb / http://blog.thejit.org/
     * @author mikael emtinger / http://gomo.se/
     * @author egraether / http://egraether.com/
     * @author WestLangley / http://github.com/WestLangley
     */
    function Vector4( x, y, z, w ) {
        this.x = x || 0;
        this.y = y || 0;
        this.z = z || 0;
        this.w = ( w !== undefined ) ? w : 1;
    }
    Object.defineProperties( Vector4.prototype, {
        "width": {
            get: function () {
                return this.z;
            },
            set: function ( value ) {
                this.z = value;
            }
        },
        "height": {
            get: function () {
                return this.w;
            },
            set: function ( value ) {
                this.w = value;
            }
        }
    } );
    Object.assign( Vector4.prototype, {
        isVector4: true,
        set: function ( x, y, z, w ) {
            this.x = x;
            this.y = y;
            this.z = z;
            this.w = w;
            return this;
        },
        setScalar: function ( scalar ) {
            this.x = scalar;
            this.y = scalar;
            this.z = scalar;
            this.w = scalar;
            return this;
        },
        setX: function ( x ) {
            this.x = x;
            return this;
        },
        setY: function ( y ) {
            this.y = y;
            return this;
        },
        setZ: function ( z ) {
            this.z = z;
            return this;
        },
        setW: function ( w ) {
            this.w = w;
            return this;
        },
        setComponent: function ( index, value ) {
            switch ( index ) {
                case 0: this.x = value; break;
                case 1: this.y = value; break;
                case 2: this.z = value; break;
                case 3: this.w = value; break;
                default: throw new Error( 'index is out of range: ' + index );
            }
            return this;
        },
        getComponent: function ( index ) {
            switch ( index ) {
                case 0: return this.x;
                case 1: return this.y;
                case 2: return this.z;
                case 3: return this.w;
                default: throw new Error( 'index is out of range: ' + index );
            }
        },
        clone: function () {
            return new this.constructor( this.x, this.y, this.z, this.w );
        },
        copy: function ( v ) {
            this.x = v.x;
            this.y = v.y;
            this.z = v.z;
            this.w = ( v.w !== undefined ) ? v.w : 1;
            return this;
        },
        add: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
                return this.addVectors( v, w );
            }
            this.x += v.x;
            this.y += v.y;
            this.z += v.z;
            this.w += v.w;
            return this;
        },
        addScalar: function ( s ) {
            this.x += s;
            this.y += s;
            this.z += s;
            this.w += s;
            return this;
        },
        addVectors: function ( a, b ) {
            this.x = a.x + b.x;
            this.y = a.y + b.y;
            this.z = a.z + b.z;
            this.w = a.w + b.w;
            return this;
        },
        addScaledVector: function ( v, s ) {
            this.x += v.x * s;
            this.y += v.y * s;
            this.z += v.z * s;
            this.w += v.w * s;
            return this;
        },
        sub: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
                return this.subVectors( v, w );
            }
            this.x -= v.x;
            this.y -= v.y;
            this.z -= v.z;
            this.w -= v.w;
            return this;
        },
        subScalar: function ( s ) {
            this.x -= s;
            this.y -= s;
            this.z -= s;
            this.w -= s;
            return this;
        },
        subVectors: function ( a, b ) {
            this.x = a.x - b.x;
            this.y = a.y - b.y;
            this.z = a.z - b.z;
            this.w = a.w - b.w;
            return this;
        },
        multiplyScalar: function ( scalar ) {
            this.x *= scalar;
            this.y *= scalar;
            this.z *= scalar;
            this.w *= scalar;
            return this;
        },
        applyMatrix4: function ( m ) {
            var x = this.x, y = this.y, z = this.z, w = this.w;
            var e = m.elements;
            this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
            this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
            this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
            this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
            return this;
        },
        divideScalar: function ( scalar ) {
            return this.multiplyScalar( 1 / scalar );
        },
        setAxisAngleFromQuaternion: function ( q ) {
            // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
            // q is assumed to be normalized
            this.w = 2 * Math.acos( q.w );
            var s = Math.sqrt( 1 - q.w * q.w );
            if ( s < 0.0001 ) {
                this.x = 1;
                this.y = 0;
                this.z = 0;
            } else {
                this.x = q.x / s;
                this.y = q.y / s;
                this.z = q.z / s;
            }
            return this;
        },
        setAxisAngleFromRotationMatrix: function ( m ) {
            // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
            // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
            var angle, x, y, z,        // variables for result
                epsilon = 0.01,        // margin to allow for rounding errors
                epsilon2 = 0.1,        // margin to distinguish between 0 and 180 degrees
                te = m.elements,
                m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
                m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
                m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
            if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
             ( Math.abs( m13 - m31 ) < epsilon ) &&
             ( Math.abs( m23 - m32 ) < epsilon ) ) {
                // singularity found
                // first check for identity matrix which must have +1 for all terms
                // in leading diagonal and zero in other terms
                if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
                 ( Math.abs( m13 + m31 ) < epsilon2 ) &&
                 ( Math.abs( m23 + m32 ) < epsilon2 ) &&
                 ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
                    // this singularity is identity matrix so angle = 0
                    this.set( 1, 0, 0, 0 );
                    return this; // zero angle, arbitrary axis
                }
                // otherwise this singularity is angle = 180
                angle = Math.PI;
                var xx = ( m11 + 1 ) / 2;
                var yy = ( m22 + 1 ) / 2;
                var zz = ( m33 + 1 ) / 2;
                var xy = ( m12 + m21 ) / 4;
                var xz = ( m13 + m31 ) / 4;
                var yz = ( m23 + m32 ) / 4;
                if ( ( xx > yy ) && ( xx > zz ) ) {
                    // m11 is the largest diagonal term
                    if ( xx < epsilon ) {
                        x = 0;
                        y = 0.707106781;
                        z = 0.707106781;
                    } else {
                        x = Math.sqrt( xx );
                        y = xy / x;
                        z = xz / x;
                    }
                } else if ( yy > zz ) {
                    // m22 is the largest diagonal term
                    if ( yy < epsilon ) {
                        x = 0.707106781;
                        y = 0;
                        z = 0.707106781;
                    } else {
                        y = Math.sqrt( yy );
                        x = xy / y;
                        z = yz / y;
                    }
                } else {
                    // m33 is the largest diagonal term so base result on this
                    if ( zz < epsilon ) {
                        x = 0.707106781;
                        y = 0.707106781;
                        z = 0;
                    } else {
                        z = Math.sqrt( zz );
                        x = xz / z;
                        y = yz / z;
                    }
                }
                this.set( x, y, z, angle );
                return this; // return 180 deg rotation
            }
            // as we have reached here there are no singularities so we can handle normally
            var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
             ( m13 - m31 ) * ( m13 - m31 ) +
             ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
            if ( Math.abs( s ) < 0.001 ) { s = 1; }
            // prevent divide by zero, should not happen if matrix is orthogonal and should be
            // caught by singularity test above, but I've left it in just in case
            this.x = ( m32 - m23 ) / s;
            this.y = ( m13 - m31 ) / s;
            this.z = ( m21 - m12 ) / s;
            this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
            return this;
        },
        min: function ( v ) {
            this.x = Math.min( this.x, v.x );
            this.y = Math.min( this.y, v.y );
            this.z = Math.min( this.z, v.z );
            this.w = Math.min( this.w, v.w );
            return this;
        },
        max: function ( v ) {
            this.x = Math.max( this.x, v.x );
            this.y = Math.max( this.y, v.y );
            this.z = Math.max( this.z, v.z );
            this.w = Math.max( this.w, v.w );
            return this;
        },
        clamp: function ( min, max ) {
            // assumes min < max, componentwise
            this.x = Math.max( min.x, Math.min( max.x, this.x ) );
            this.y = Math.max( min.y, Math.min( max.y, this.y ) );
            this.z = Math.max( min.z, Math.min( max.z, this.z ) );
            this.w = Math.max( min.w, Math.min( max.w, this.w ) );
            return this;
        },
        clampScalar: function ( minVal, maxVal ) {
            this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
            this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
            this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
            this.w = Math.max( minVal, Math.min( maxVal, this.w ) );
            return this;
        },
        clampLength: function ( min, max ) {
            var length = this.length();
            return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
        },
        floor: function () {
            this.x = Math.floor( this.x );
            this.y = Math.floor( this.y );
            this.z = Math.floor( this.z );
            this.w = Math.floor( this.w );
            return this;
        },
        ceil: function () {
            this.x = Math.ceil( this.x );
            this.y = Math.ceil( this.y );
            this.z = Math.ceil( this.z );
            this.w = Math.ceil( this.w );
            return this;
        },
        round: function () {
            this.x = Math.round( this.x );
            this.y = Math.round( this.y );
            this.z = Math.round( this.z );
            this.w = Math.round( this.w );
            return this;
        },
        roundToZero: function () {
            this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
            this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
            this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
            this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
            return this;
        },
        negate: function () {
            this.x = - this.x;
            this.y = - this.y;
            this.z = - this.z;
            this.w = - this.w;
            return this;
        },
        dot: function ( v ) {
            return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
        },
        lengthSq: function () {
            return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
        },
        length: function () {
            return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
        },
        manhattanLength: function () {
            return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
        },
        normalize: function () {
            return this.divideScalar( this.length() || 1 );
        },
        setLength: function ( length ) {
            return this.normalize().multiplyScalar( length );
        },
        lerp: function ( v, alpha ) {
            this.x += ( v.x - this.x ) * alpha;
            this.y += ( v.y - this.y ) * alpha;
            this.z += ( v.z - this.z ) * alpha;
            this.w += ( v.w - this.w ) * alpha;
            return this;
        },
        lerpVectors: function ( v1, v2, alpha ) {
            return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
        },
        equals: function ( v ) {
            return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this.x = array[ offset ];
            this.y = array[ offset + 1 ];
            this.z = array[ offset + 2 ];
            this.w = array[ offset + 3 ];
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            array[ offset ] = this.x;
            array[ offset + 1 ] = this.y;
            array[ offset + 2 ] = this.z;
            array[ offset + 3 ] = this.w;
            return array;
        },
        fromBufferAttribute: function ( attribute, index, offset ) {
            if ( offset !== undefined ) {
                console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
            }
            this.x = attribute.getX( index );
            this.y = attribute.getY( index );
            this.z = attribute.getZ( index );
            this.w = attribute.getW( index );
            return this;
        },
        random: function () {
            this.x = Math.random();
            this.y = Math.random();
            this.z = Math.random();
            this.w = Math.random();
            return this;
        }
    } );
    /**
     * @author szimek / https://github.com/szimek/
     * @author alteredq / http://alteredqualia.com/
     * @author Marius Kintel / https://github.com/kintel
     */
    /*
     In options, we can specify:
     * Texture parameters for an auto-generated target texture
     * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
    */
    function WebGLRenderTarget( width, height, options ) {
        this.width = width;
        this.height = height;
        this.scissor = new Vector4( 0, 0, width, height );
        this.scissorTest = false;
        this.viewport = new Vector4( 0, 0, width, height );
        options = options || {};
        this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
        this.texture.image = {};
        this.texture.image.width = width;
        this.texture.image.height = height;
        this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
        this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
        this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
        this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
        this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
    }
    WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
        constructor: WebGLRenderTarget,
        isWebGLRenderTarget: true,
        setSize: function ( width, height ) {
            if ( this.width !== width || this.height !== height ) {
                this.width = width;
                this.height = height;
                this.texture.image.width = width;
                this.texture.image.height = height;
                this.dispose();
            }
            this.viewport.set( 0, 0, width, height );
            this.scissor.set( 0, 0, width, height );
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( source ) {
            this.width = source.width;
            this.height = source.height;
            this.viewport.copy( source.viewport );
            this.texture = source.texture.clone();
            this.depthBuffer = source.depthBuffer;
            this.stencilBuffer = source.stencilBuffer;
            this.depthTexture = source.depthTexture;
            return this;
        },
        dispose: function () {
            this.dispatchEvent( { type: 'dispose' } );
        }
    } );
    /**
     * @author Mugen87 / https://github.com/Mugen87
     * @author Matt DesLauriers / @mattdesl
     */
    function WebGLMultisampleRenderTarget( width, height, options ) {
        WebGLRenderTarget.call( this, width, height, options );
        this.samples = 4;
    }
    WebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), {
        constructor: WebGLMultisampleRenderTarget,
        isWebGLMultisampleRenderTarget: true,
        copy: function ( source ) {
            WebGLRenderTarget.prototype.copy.call( this, source );
            this.samples = source.samples;
            return this;
        }
    } );
    /**
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     * @author WestLangley / http://github.com/WestLangley
     * @author bhouston / http://clara.io
     */
    function Quaternion( x, y, z, w ) {
        this._x = x || 0;
        this._y = y || 0;
        this._z = z || 0;
        this._w = ( w !== undefined ) ? w : 1;
    }
    Object.assign( Quaternion, {
        slerp: function ( qa, qb, qm, t ) {
            return qm.copy( qa ).slerp( qb, t );
        },
        slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
            // fuzz-free, array-based Quaternion SLERP operation
            var x0 = src0[ srcOffset0 + 0 ],
                y0 = src0[ srcOffset0 + 1 ],
                z0 = src0[ srcOffset0 + 2 ],
                w0 = src0[ srcOffset0 + 3 ],
                x1 = src1[ srcOffset1 + 0 ],
                y1 = src1[ srcOffset1 + 1 ],
                z1 = src1[ srcOffset1 + 2 ],
                w1 = src1[ srcOffset1 + 3 ];
            if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
                var s = 1 - t,
                    cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
                    dir = ( cos >= 0 ? 1 : - 1 ),
                    sqrSin = 1 - cos * cos;
                // Skip the Slerp for tiny steps to avoid numeric problems:
                if ( sqrSin > Number.EPSILON ) {
                    var sin = Math.sqrt( sqrSin ),
                        len = Math.atan2( sin, cos * dir );
                    s = Math.sin( s * len ) / sin;
                    t = Math.sin( t * len ) / sin;
                }
                var tDir = t * dir;
                x0 = x0 * s + x1 * tDir;
                y0 = y0 * s + y1 * tDir;
                z0 = z0 * s + z1 * tDir;
                w0 = w0 * s + w1 * tDir;
                // Normalize in case we just did a lerp:
                if ( s === 1 - t ) {
                    var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
                    x0 *= f;
                    y0 *= f;
                    z0 *= f;
                    w0 *= f;
                }
            }
            dst[ dstOffset ] = x0;
            dst[ dstOffset + 1 ] = y0;
            dst[ dstOffset + 2 ] = z0;
            dst[ dstOffset + 3 ] = w0;
        },
        multiplyQuaternionsFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {
            var x0 = src0[ srcOffset0 ];
            var y0 = src0[ srcOffset0 + 1 ];
            var z0 = src0[ srcOffset0 + 2 ];
            var w0 = src0[ srcOffset0 + 3 ];
            var x1 = src1[ srcOffset1 ];
            var y1 = src1[ srcOffset1 + 1 ];
            var z1 = src1[ srcOffset1 + 2 ];
            var w1 = src1[ srcOffset1 + 3 ];
            dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
            dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
            dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
            dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
            return dst;
        }
    } );
    Object.defineProperties( Quaternion.prototype, {
        x: {
            get: function () {
                return this._x;
            },
            set: function ( value ) {
                this._x = value;
                this._onChangeCallback();
            }
        },
        y: {
            get: function () {
                return this._y;
            },
            set: function ( value ) {
                this._y = value;
                this._onChangeCallback();
            }
        },
        z: {
            get: function () {
                return this._z;
            },
            set: function ( value ) {
                this._z = value;
                this._onChangeCallback();
            }
        },
        w: {
            get: function () {
                return this._w;
            },
            set: function ( value ) {
                this._w = value;
                this._onChangeCallback();
            }
        }
    } );
    Object.assign( Quaternion.prototype, {
        isQuaternion: true,
        set: function ( x, y, z, w ) {
            this._x = x;
            this._y = y;
            this._z = z;
            this._w = w;
            this._onChangeCallback();
            return this;
        },
        clone: function () {
            return new this.constructor( this._x, this._y, this._z, this._w );
        },
        copy: function ( quaternion ) {
            this._x = quaternion.x;
            this._y = quaternion.y;
            this._z = quaternion.z;
            this._w = quaternion.w;
            this._onChangeCallback();
            return this;
        },
        setFromEuler: function ( euler, update ) {
            if ( ! ( euler && euler.isEuler ) ) {
                throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
            }
            var x = euler._x, y = euler._y, z = euler._z, order = euler.order;
            // http://www.mathworks.com/matlabcentral/fileexchange/
            //     20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
            //    content/SpinCalc.m
            var cos = Math.cos;
            var sin = Math.sin;
            var c1 = cos( x / 2 );
            var c2 = cos( y / 2 );
            var c3 = cos( z / 2 );
            var s1 = sin( x / 2 );
            var s2 = sin( y / 2 );
            var s3 = sin( z / 2 );
            switch ( order ) {
                case 'XYZ':
                    this._x = s1 * c2 * c3 + c1 * s2 * s3;
                    this._y = c1 * s2 * c3 - s1 * c2 * s3;
                    this._z = c1 * c2 * s3 + s1 * s2 * c3;
                    this._w = c1 * c2 * c3 - s1 * s2 * s3;
                    break;
                case 'YXZ':
                    this._x = s1 * c2 * c3 + c1 * s2 * s3;
                    this._y = c1 * s2 * c3 - s1 * c2 * s3;
                    this._z = c1 * c2 * s3 - s1 * s2 * c3;
                    this._w = c1 * c2 * c3 + s1 * s2 * s3;
                    break;
                case 'ZXY':
                    this._x = s1 * c2 * c3 - c1 * s2 * s3;
                    this._y = c1 * s2 * c3 + s1 * c2 * s3;
                    this._z = c1 * c2 * s3 + s1 * s2 * c3;
                    this._w = c1 * c2 * c3 - s1 * s2 * s3;
                    break;
                case 'ZYX':
                    this._x = s1 * c2 * c3 - c1 * s2 * s3;
                    this._y = c1 * s2 * c3 + s1 * c2 * s3;
                    this._z = c1 * c2 * s3 - s1 * s2 * c3;
                    this._w = c1 * c2 * c3 + s1 * s2 * s3;
                    break;
                case 'YZX':
                    this._x = s1 * c2 * c3 + c1 * s2 * s3;
                    this._y = c1 * s2 * c3 + s1 * c2 * s3;
                    this._z = c1 * c2 * s3 - s1 * s2 * c3;
                    this._w = c1 * c2 * c3 - s1 * s2 * s3;
                    break;
                case 'XZY':
                    this._x = s1 * c2 * c3 - c1 * s2 * s3;
                    this._y = c1 * s2 * c3 - s1 * c2 * s3;
                    this._z = c1 * c2 * s3 + s1 * s2 * c3;
                    this._w = c1 * c2 * c3 + s1 * s2 * s3;
                    break;
                default:
                    console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );
            }
            if ( update !== false ) { this._onChangeCallback(); }
            return this;
        },
        setFromAxisAngle: function ( axis, angle ) {
            // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
            // assumes axis is normalized
            var halfAngle = angle / 2, s = Math.sin( halfAngle );
            this._x = axis.x * s;
            this._y = axis.y * s;
            this._z = axis.z * s;
            this._w = Math.cos( halfAngle );
            this._onChangeCallback();
            return this;
        },
        setFromRotationMatrix: function ( m ) {
            // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
            // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
            var te = m.elements,
                m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
                m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
                m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
                trace = m11 + m22 + m33,
                s;
            if ( trace > 0 ) {
                s = 0.5 / Math.sqrt( trace + 1.0 );
                this._w = 0.25 / s;
                this._x = ( m32 - m23 ) * s;
                this._y = ( m13 - m31 ) * s;
                this._z = ( m21 - m12 ) * s;
            } else if ( m11 > m22 && m11 > m33 ) {
                s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
                this._w = ( m32 - m23 ) / s;
                this._x = 0.25 * s;
                this._y = ( m12 + m21 ) / s;
                this._z = ( m13 + m31 ) / s;
            } else if ( m22 > m33 ) {
                s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
                this._w = ( m13 - m31 ) / s;
                this._x = ( m12 + m21 ) / s;
                this._y = 0.25 * s;
                this._z = ( m23 + m32 ) / s;
            } else {
                s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
                this._w = ( m21 - m12 ) / s;
                this._x = ( m13 + m31 ) / s;
                this._y = ( m23 + m32 ) / s;
                this._z = 0.25 * s;
            }
            this._onChangeCallback();
            return this;
        },
        setFromUnitVectors: function ( vFrom, vTo ) {
            // assumes direction vectors vFrom and vTo are normalized
            var EPS = 0.000001;
            var r = vFrom.dot( vTo ) + 1;
            if ( r < EPS ) {
                r = 0;
                if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
                    this._x = - vFrom.y;
                    this._y = vFrom.x;
                    this._z = 0;
                    this._w = r;
                } else {
                    this._x = 0;
                    this._y = - vFrom.z;
                    this._z = vFrom.y;
                    this._w = r;
                }
            } else {
                // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
                this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
                this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
                this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
                this._w = r;
            }
            return this.normalize();
        },
        angleTo: function ( q ) {
            return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) );
        },
        rotateTowards: function ( q, step ) {
            var angle = this.angleTo( q );
            if ( angle === 0 ) { return this; }
            var t = Math.min( 1, step / angle );
            this.slerp( q, t );
            return this;
        },
        inverse: function () {
            // quaternion is assumed to have unit length
            return this.conjugate();
        },
        conjugate: function () {
            this._x *= - 1;
            this._y *= - 1;
            this._z *= - 1;
            this._onChangeCallback();
            return this;
        },
        dot: function ( v ) {
            return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
        },
        lengthSq: function () {
            return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
        },
        length: function () {
            return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
        },
        normalize: function () {
            var l = this.length();
            if ( l === 0 ) {
                this._x = 0;
                this._y = 0;
                this._z = 0;
                this._w = 1;
            } else {
                l = 1 / l;
                this._x = this._x * l;
                this._y = this._y * l;
                this._z = this._z * l;
                this._w = this._w * l;
            }
            this._onChangeCallback();
            return this;
        },
        multiply: function ( q, p ) {
            if ( p !== undefined ) {
                console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
                return this.multiplyQuaternions( q, p );
            }
            return this.multiplyQuaternions( this, q );
        },
        premultiply: function ( q ) {
            return this.multiplyQuaternions( q, this );
        },
        multiplyQuaternions: function ( a, b ) {
            // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
            var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
            var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
            this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
            this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
            this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
            this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
            this._onChangeCallback();
            return this;
        },
        slerp: function ( qb, t ) {
            if ( t === 0 ) { return this; }
            if ( t === 1 ) { return this.copy( qb ); }
            var x = this._x, y = this._y, z = this._z, w = this._w;
            // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
            var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
            if ( cosHalfTheta < 0 ) {
                this._w = - qb._w;
                this._x = - qb._x;
                this._y = - qb._y;
                this._z = - qb._z;
                cosHalfTheta = - cosHalfTheta;
            } else {
                this.copy( qb );
            }
            if ( cosHalfTheta >= 1.0 ) {
                this._w = w;
                this._x = x;
                this._y = y;
                this._z = z;
                return this;
            }
            var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
            if ( sqrSinHalfTheta <= Number.EPSILON ) {
                var s = 1 - t;
                this._w = s * w + t * this._w;
                this._x = s * x + t * this._x;
                this._y = s * y + t * this._y;
                this._z = s * z + t * this._z;
                this.normalize();
                this._onChangeCallback();
                return this;
            }
            var sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
            var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
            var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
                ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
            this._w = ( w * ratioA + this._w * ratioB );
            this._x = ( x * ratioA + this._x * ratioB );
            this._y = ( y * ratioA + this._y * ratioB );
            this._z = ( z * ratioA + this._z * ratioB );
            this._onChangeCallback();
            return this;
        },
        equals: function ( quaternion ) {
            return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this._x = array[ offset ];
            this._y = array[ offset + 1 ];
            this._z = array[ offset + 2 ];
            this._w = array[ offset + 3 ];
            this._onChangeCallback();
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            array[ offset ] = this._x;
            array[ offset + 1 ] = this._y;
            array[ offset + 2 ] = this._z;
            array[ offset + 3 ] = this._w;
            return array;
        },
        fromBufferAttribute: function ( attribute, index ) {
            this._x = attribute.getX( index );
            this._y = attribute.getY( index );
            this._z = attribute.getZ( index );
            this._w = attribute.getW( index );
            return this;
        },
        _onChange: function ( callback ) {
            this._onChangeCallback = callback;
            return this;
        },
        _onChangeCallback: function () {}
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author kile / http://kile.stravaganza.org/
     * @author philogb / http://blog.thejit.org/
     * @author mikael emtinger / http://gomo.se/
     * @author egraether / http://egraether.com/
     * @author WestLangley / http://github.com/WestLangley
     */
    var _vector = new Vector3();
    var _quaternion = new Quaternion();
    function Vector3( x, y, z ) {
        this.x = x || 0;
        this.y = y || 0;
        this.z = z || 0;
    }
    Object.assign( Vector3.prototype, {
        isVector3: true,
        set: function ( x, y, z ) {
            this.x = x;
            this.y = y;
            this.z = z;
            return this;
        },
        setScalar: function ( scalar ) {
            this.x = scalar;
            this.y = scalar;
            this.z = scalar;
            return this;
        },
        setX: function ( x ) {
            this.x = x;
            return this;
        },
        setY: function ( y ) {
            this.y = y;
            return this;
        },
        setZ: function ( z ) {
            this.z = z;
            return this;
        },
        setComponent: function ( index, value ) {
            switch ( index ) {
                case 0: this.x = value; break;
                case 1: this.y = value; break;
                case 2: this.z = value; break;
                default: throw new Error( 'index is out of range: ' + index );
            }
            return this;
        },
        getComponent: function ( index ) {
            switch ( index ) {
                case 0: return this.x;
                case 1: return this.y;
                case 2: return this.z;
                default: throw new Error( 'index is out of range: ' + index );
            }
        },
        clone: function () {
            return new this.constructor( this.x, this.y, this.z );
        },
        copy: function ( v ) {
            this.x = v.x;
            this.y = v.y;
            this.z = v.z;
            return this;
        },
        add: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
                return this.addVectors( v, w );
            }
            this.x += v.x;
            this.y += v.y;
            this.z += v.z;
            return this;
        },
        addScalar: function ( s ) {
            this.x += s;
            this.y += s;
            this.z += s;
            return this;
        },
        addVectors: function ( a, b ) {
            this.x = a.x + b.x;
            this.y = a.y + b.y;
            this.z = a.z + b.z;
            return this;
        },
        addScaledVector: function ( v, s ) {
            this.x += v.x * s;
            this.y += v.y * s;
            this.z += v.z * s;
            return this;
        },
        sub: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
                return this.subVectors( v, w );
            }
            this.x -= v.x;
            this.y -= v.y;
            this.z -= v.z;
            return this;
        },
        subScalar: function ( s ) {
            this.x -= s;
            this.y -= s;
            this.z -= s;
            return this;
        },
        subVectors: function ( a, b ) {
            this.x = a.x - b.x;
            this.y = a.y - b.y;
            this.z = a.z - b.z;
            return this;
        },
        multiply: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
                return this.multiplyVectors( v, w );
            }
            this.x *= v.x;
            this.y *= v.y;
            this.z *= v.z;
            return this;
        },
        multiplyScalar: function ( scalar ) {
            this.x *= scalar;
            this.y *= scalar;
            this.z *= scalar;
            return this;
        },
        multiplyVectors: function ( a, b ) {
            this.x = a.x * b.x;
            this.y = a.y * b.y;
            this.z = a.z * b.z;
            return this;
        },
        applyEuler: function ( euler ) {
            if ( ! ( euler && euler.isEuler ) ) {
                console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
            }
            return this.applyQuaternion( _quaternion.setFromEuler( euler ) );
        },
        applyAxisAngle: function ( axis, angle ) {
            return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) );
        },
        applyMatrix3: function ( m ) {
            var x = this.x, y = this.y, z = this.z;
            var e = m.elements;
            this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
            this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
            this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
            return this;
        },
        applyNormalMatrix: function ( m ) {
            return this.applyMatrix3( m ).normalize();
        },
        applyMatrix4: function ( m ) {
            var x = this.x, y = this.y, z = this.z;
            var e = m.elements;
            var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
            this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
            this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
            this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
            return this;
        },
        applyQuaternion: function ( q ) {
            var x = this.x, y = this.y, z = this.z;
            var qx = q.x, qy = q.y, qz = q.z, qw = q.w;
            // calculate quat * vector
            var ix = qw * x + qy * z - qz * y;
            var iy = qw * y + qz * x - qx * z;
            var iz = qw * z + qx * y - qy * x;
            var iw = - qx * x - qy * y - qz * z;
            // calculate result * inverse quat
            this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
            this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
            this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
            return this;
        },
        project: function ( camera ) {
            return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );
        },
        unproject: function ( camera ) {
            return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );
        },
        transformDirection: function ( m ) {
            // input: THREE.Matrix4 affine matrix
            // vector interpreted as a direction
            var x = this.x, y = this.y, z = this.z;
            var e = m.elements;
            this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
            this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
            this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
            return this.normalize();
        },
        divide: function ( v ) {
            this.x /= v.x;
            this.y /= v.y;
            this.z /= v.z;
            return this;
        },
        divideScalar: function ( scalar ) {
            return this.multiplyScalar( 1 / scalar );
        },
        min: function ( v ) {
            this.x = Math.min( this.x, v.x );
            this.y = Math.min( this.y, v.y );
            this.z = Math.min( this.z, v.z );
            return this;
        },
        max: function ( v ) {
            this.x = Math.max( this.x, v.x );
            this.y = Math.max( this.y, v.y );
            this.z = Math.max( this.z, v.z );
            return this;
        },
        clamp: function ( min, max ) {
            // assumes min < max, componentwise
            this.x = Math.max( min.x, Math.min( max.x, this.x ) );
            this.y = Math.max( min.y, Math.min( max.y, this.y ) );
            this.z = Math.max( min.z, Math.min( max.z, this.z ) );
            return this;
        },
        clampScalar: function ( minVal, maxVal ) {
            this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
            this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
            this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
            return this;
        },
        clampLength: function ( min, max ) {
            var length = this.length();
            return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
        },
        floor: function () {
            this.x = Math.floor( this.x );
            this.y = Math.floor( this.y );
            this.z = Math.floor( this.z );
            return this;
        },
        ceil: function () {
            this.x = Math.ceil( this.x );
            this.y = Math.ceil( this.y );
            this.z = Math.ceil( this.z );
            return this;
        },
        round: function () {
            this.x = Math.round( this.x );
            this.y = Math.round( this.y );
            this.z = Math.round( this.z );
            return this;
        },
        roundToZero: function () {
            this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
            this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
            this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
            return this;
        },
        negate: function () {
            this.x = - this.x;
            this.y = - this.y;
            this.z = - this.z;
            return this;
        },
        dot: function ( v ) {
            return this.x * v.x + this.y * v.y + this.z * v.z;
        },
        // TODO lengthSquared?
        lengthSq: function () {
            return this.x * this.x + this.y * this.y + this.z * this.z;
        },
        length: function () {
            return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
        },
        manhattanLength: function () {
            return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
        },
        normalize: function () {
            return this.divideScalar( this.length() || 1 );
        },
        setLength: function ( length ) {
            return this.normalize().multiplyScalar( length );
        },
        lerp: function ( v, alpha ) {
            this.x += ( v.x - this.x ) * alpha;
            this.y += ( v.y - this.y ) * alpha;
            this.z += ( v.z - this.z ) * alpha;
            return this;
        },
        lerpVectors: function ( v1, v2, alpha ) {
            return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
        },
        cross: function ( v, w ) {
            if ( w !== undefined ) {
                console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
                return this.crossVectors( v, w );
            }
            return this.crossVectors( this, v );
        },
        crossVectors: function ( a, b ) {
            var ax = a.x, ay = a.y, az = a.z;
            var bx = b.x, by = b.y, bz = b.z;
            this.x = ay * bz - az * by;
            this.y = az * bx - ax * bz;
            this.z = ax * by - ay * bx;
            return this;
        },
        projectOnVector: function ( v ) {
            var denominator = v.lengthSq();
            if ( denominator === 0 ) { return this.set( 0, 0, 0 ); }
            var scalar = v.dot( this ) / denominator;
            return this.copy( v ).multiplyScalar( scalar );
        },
        projectOnPlane: function ( planeNormal ) {
            _vector.copy( this ).projectOnVector( planeNormal );
            return this.sub( _vector );
        },
        reflect: function ( normal ) {
            // reflect incident vector off plane orthogonal to normal
            // normal is assumed to have unit length
            return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
        },
        angleTo: function ( v ) {
            var denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
            if ( denominator === 0 ) { return Math.PI / 2; }
            var theta = this.dot( v ) / denominator;
            // clamp, to handle numerical problems
            return Math.acos( MathUtils.clamp( theta, - 1, 1 ) );
        },
        distanceTo: function ( v ) {
            return Math.sqrt( this.distanceToSquared( v ) );
        },
        distanceToSquared: function ( v ) {
            var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
            return dx * dx + dy * dy + dz * dz;
        },
        manhattanDistanceTo: function ( v ) {
            return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
        },
        setFromSpherical: function ( s ) {
            return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
        },
        setFromSphericalCoords: function ( radius, phi, theta ) {
            var sinPhiRadius = Math.sin( phi ) * radius;
            this.x = sinPhiRadius * Math.sin( theta );
            this.y = Math.cos( phi ) * radius;
            this.z = sinPhiRadius * Math.cos( theta );
            return this;
        },
        setFromCylindrical: function ( c ) {
            return this.setFromCylindricalCoords( c.radius, c.theta, c.y );
        },
        setFromCylindricalCoords: function ( radius, theta, y ) {
            this.x = radius * Math.sin( theta );
            this.y = y;
            this.z = radius * Math.cos( theta );
            return this;
        },
        setFromMatrixPosition: function ( m ) {
            var e = m.elements;
            this.x = e[ 12 ];
            this.y = e[ 13 ];
            this.z = e[ 14 ];
            return this;
        },
        setFromMatrixScale: function ( m ) {
            var sx = this.setFromMatrixColumn( m, 0 ).length();
            var sy = this.setFromMatrixColumn( m, 1 ).length();
            var sz = this.setFromMatrixColumn( m, 2 ).length();
            this.x = sx;
            this.y = sy;
            this.z = sz;
            return this;
        },
        setFromMatrixColumn: function ( m, index ) {
            return this.fromArray( m.elements, index * 4 );
        },
        setFromMatrix3Column: function ( m, index ) {
            return this.fromArray( m.elements, index * 3 );
        },
        equals: function ( v ) {
            return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this.x = array[ offset ];
            this.y = array[ offset + 1 ];
            this.z = array[ offset + 2 ];
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            array[ offset ] = this.x;
            array[ offset + 1 ] = this.y;
            array[ offset + 2 ] = this.z;
            return array;
        },
        fromBufferAttribute: function ( attribute, index, offset ) {
            if ( offset !== undefined ) {
                console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );
            }
            this.x = attribute.getX( index );
            this.y = attribute.getY( index );
            this.z = attribute.getZ( index );
            return this;
        },
        random: function () {
            this.x = Math.random();
            this.y = Math.random();
            this.z = Math.random();
            return this;
        }
    } );
    var _v1 = new Vector3();
    var _m1 = new Matrix4();
    var _zero = new Vector3( 0, 0, 0 );
    var _one = new Vector3( 1, 1, 1 );
    var _x = new Vector3();
    var _y = new Vector3();
    var _z = new Vector3();
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author supereggbert / http://www.paulbrunt.co.uk/
     * @author philogb / http://blog.thejit.org/
     * @author jordi_ros / http://plattsoft.com
     * @author D1plo1d / http://github.com/D1plo1d
     * @author alteredq / http://alteredqualia.com/
     * @author mikael emtinger / http://gomo.se/
     * @author timknip / http://www.floorplanner.com/
     * @author bhouston / http://clara.io
     * @author WestLangley / http://github.com/WestLangley
     */
    function Matrix4() {
        this.elements = [
            1, 0, 0, 0,
            0, 1, 0, 0,
            0, 0, 1, 0,
            0, 0, 0, 1
        ];
        if ( arguments.length > 0 ) {
            console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
        }
    }
    Object.assign( Matrix4.prototype, {
        isMatrix4: true,
        set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
            var te = this.elements;
            te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
            te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
            te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
            te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
            return this;
        },
        identity: function () {
            this.set(
                1, 0, 0, 0,
                0, 1, 0, 0,
                0, 0, 1, 0,
                0, 0, 0, 1
            );
            return this;
        },
        clone: function () {
            return new Matrix4().fromArray( this.elements );
        },
        copy: function ( m ) {
            var te = this.elements;
            var me = m.elements;
            te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
            te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
            te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
            te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
            return this;
        },
        copyPosition: function ( m ) {
            var te = this.elements, me = m.elements;
            te[ 12 ] = me[ 12 ];
            te[ 13 ] = me[ 13 ];
            te[ 14 ] = me[ 14 ];
            return this;
        },
        extractBasis: function ( xAxis, yAxis, zAxis ) {
            xAxis.setFromMatrixColumn( this, 0 );
            yAxis.setFromMatrixColumn( this, 1 );
            zAxis.setFromMatrixColumn( this, 2 );
            return this;
        },
        makeBasis: function ( xAxis, yAxis, zAxis ) {
            this.set(
                xAxis.x, yAxis.x, zAxis.x, 0,
                xAxis.y, yAxis.y, zAxis.y, 0,
                xAxis.z, yAxis.z, zAxis.z, 0,
                0, 0, 0, 1
            );
            return this;
        },
        extractRotation: function ( m ) {
            // this method does not support reflection matrices
            var te = this.elements;
            var me = m.elements;
            var scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length();
            var scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length();
            var scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length();
            te[ 0 ] = me[ 0 ] * scaleX;
            te[ 1 ] = me[ 1 ] * scaleX;
            te[ 2 ] = me[ 2 ] * scaleX;
            te[ 3 ] = 0;
            te[ 4 ] = me[ 4 ] * scaleY;
            te[ 5 ] = me[ 5 ] * scaleY;
            te[ 6 ] = me[ 6 ] * scaleY;
            te[ 7 ] = 0;
            te[ 8 ] = me[ 8 ] * scaleZ;
            te[ 9 ] = me[ 9 ] * scaleZ;
            te[ 10 ] = me[ 10 ] * scaleZ;
            te[ 11 ] = 0;
            te[ 12 ] = 0;
            te[ 13 ] = 0;
            te[ 14 ] = 0;
            te[ 15 ] = 1;
            return this;
        },
        makeRotationFromEuler: function ( euler ) {
            if ( ! ( euler && euler.isEuler ) ) {
                console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
            }
            var te = this.elements;
            var x = euler.x, y = euler.y, z = euler.z;
            var a = Math.cos( x ), b = Math.sin( x );
            var c = Math.cos( y ), d = Math.sin( y );
            var e = Math.cos( z ), f = Math.sin( z );
            if ( euler.order === 'XYZ' ) {
                var ae = a * e, af = a * f, be = b * e, bf = b * f;
                te[ 0 ] = c * e;
                te[ 4 ] = - c * f;
                te[ 8 ] = d;
                te[ 1 ] = af + be * d;
                te[ 5 ] = ae - bf * d;
                te[ 9 ] = - b * c;
                te[ 2 ] = bf - ae * d;
                te[ 6 ] = be + af * d;
                te[ 10 ] = a * c;
            } else if ( euler.order === 'YXZ' ) {
                var ce = c * e, cf = c * f, de = d * e, df = d * f;
                te[ 0 ] = ce + df * b;
                te[ 4 ] = de * b - cf;
                te[ 8 ] = a * d;
                te[ 1 ] = a * f;
                te[ 5 ] = a * e;
                te[ 9 ] = - b;
                te[ 2 ] = cf * b - de;
                te[ 6 ] = df + ce * b;
                te[ 10 ] = a * c;
            } else if ( euler.order === 'ZXY' ) {
                var ce = c * e, cf = c * f, de = d * e, df = d * f;
                te[ 0 ] = ce - df * b;
                te[ 4 ] = - a * f;
                te[ 8 ] = de + cf * b;
                te[ 1 ] = cf + de * b;
                te[ 5 ] = a * e;
                te[ 9 ] = df - ce * b;
                te[ 2 ] = - a * d;
                te[ 6 ] = b;
                te[ 10 ] = a * c;
            } else if ( euler.order === 'ZYX' ) {
                var ae = a * e, af = a * f, be = b * e, bf = b * f;
                te[ 0 ] = c * e;
                te[ 4 ] = be * d - af;
                te[ 8 ] = ae * d + bf;
                te[ 1 ] = c * f;
                te[ 5 ] = bf * d + ae;
                te[ 9 ] = af * d - be;
                te[ 2 ] = - d;
                te[ 6 ] = b * c;
                te[ 10 ] = a * c;
            } else if ( euler.order === 'YZX' ) {
                var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
                te[ 0 ] = c * e;
                te[ 4 ] = bd - ac * f;
                te[ 8 ] = bc * f + ad;
                te[ 1 ] = f;
                te[ 5 ] = a * e;
                te[ 9 ] = - b * e;
                te[ 2 ] = - d * e;
                te[ 6 ] = ad * f + bc;
                te[ 10 ] = ac - bd * f;
            } else if ( euler.order === 'XZY' ) {
                var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
                te[ 0 ] = c * e;
                te[ 4 ] = - f;
                te[ 8 ] = d * e;
                te[ 1 ] = ac * f + bd;
                te[ 5 ] = a * e;
                te[ 9 ] = ad * f - bc;
                te[ 2 ] = bc * f - ad;
                te[ 6 ] = b * e;
                te[ 10 ] = bd * f + ac;
            }
            // bottom row
            te[ 3 ] = 0;
            te[ 7 ] = 0;
            te[ 11 ] = 0;
            // last column
            te[ 12 ] = 0;
            te[ 13 ] = 0;
            te[ 14 ] = 0;
            te[ 15 ] = 1;
            return this;
        },
        makeRotationFromQuaternion: function ( q ) {
            return this.compose( _zero, q, _one );
        },
        lookAt: function ( eye, target, up ) {
            var te = this.elements;
            _z.subVectors( eye, target );
            if ( _z.lengthSq() === 0 ) {
                // eye and target are in the same position
                _z.z = 1;
            }
            _z.normalize();
            _x.crossVectors( up, _z );
            if ( _x.lengthSq() === 0 ) {
                // up and z are parallel
                if ( Math.abs( up.z ) === 1 ) {
                    _z.x += 0.0001;
                } else {
                    _z.z += 0.0001;
                }
                _z.normalize();
                _x.crossVectors( up, _z );
            }
            _x.normalize();
            _y.crossVectors( _z, _x );
            te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
            te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
            te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;
            return this;
        },
        multiply: function ( m, n ) {
            if ( n !== undefined ) {
                console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
                return this.multiplyMatrices( m, n );
            }
            return this.multiplyMatrices( this, m );
        },
        premultiply: function ( m ) {
            return this.multiplyMatrices( m, this );
        },
        multiplyMatrices: function ( a, b ) {
            var ae = a.elements;
            var be = b.elements;
            var te = this.elements;
            var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
            var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
            var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
            var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
            var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
            var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
            var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
            var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
            te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
            te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
            te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
            te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
            te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
            te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
            te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
            te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
            te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
            te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
            te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
            te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
            te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
            te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
            te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
            te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
            return this;
        },
        multiplyScalar: function ( s ) {
            var te = this.elements;
            te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
            te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
            te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
            te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
            return this;
        },
        determinant: function () {
            var te = this.elements;
            var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
            var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
            var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
            var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
            //TODO: make this more efficient
            //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
            return (
                n41 * (
                    + n14 * n23 * n32
                     - n13 * n24 * n32
                     - n14 * n22 * n33
                     + n12 * n24 * n33
                     + n13 * n22 * n34
                     - n12 * n23 * n34
                ) +
                n42 * (
                    + n11 * n23 * n34
                     - n11 * n24 * n33
                     + n14 * n21 * n33
                     - n13 * n21 * n34
                     + n13 * n24 * n31
                     - n14 * n23 * n31
                ) +
                n43 * (
                    + n11 * n24 * n32
                     - n11 * n22 * n34
                     - n14 * n21 * n32
                     + n12 * n21 * n34
                     + n14 * n22 * n31
                     - n12 * n24 * n31
                ) +
                n44 * (
                    - n13 * n22 * n31
                     - n11 * n23 * n32
                     + n11 * n22 * n33
                     + n13 * n21 * n32
                     - n12 * n21 * n33
                     + n12 * n23 * n31
                )
            );
        },
        transpose: function () {
            var te = this.elements;
            var tmp;
            tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
            tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
            tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
            tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
            tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
            tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
            return this;
        },
        setPosition: function ( x, y, z ) {
            var te = this.elements;
            if ( x.isVector3 ) {
                te[ 12 ] = x.x;
                te[ 13 ] = x.y;
                te[ 14 ] = x.z;
            } else {
                te[ 12 ] = x;
                te[ 13 ] = y;
                te[ 14 ] = z;
            }
            return this;
        },
        getInverse: function ( m, throwOnDegenerate ) {
            if ( throwOnDegenerate !== undefined ) {
                console.warn( "THREE.Matrix4: .getInverse() can no longer be configured to throw on degenerate." );
            }
            // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
            var te = this.elements,
                me = m.elements,
                n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
                n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
                n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
                n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
                t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
                t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
                t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
                t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
            var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
            if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); }
            var detInv = 1 / det;
            te[ 0 ] = t11 * detInv;
            te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
            te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
            te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
            te[ 4 ] = t12 * detInv;
            te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
            te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
            te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
            te[ 8 ] = t13 * detInv;
            te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
            te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
            te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
            te[ 12 ] = t14 * detInv;
            te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
            te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
            te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
            return this;
        },
        scale: function ( v ) {
            var te = this.elements;
            var x = v.x, y = v.y, z = v.z;
            te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
            te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
            te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
            te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
            return this;
        },
        getMaxScaleOnAxis: function () {
            var te = this.elements;
            var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] *
te[ 1 ] + te[ 2 ] * te[ 2 ];
            var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
            var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
            return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
        },
        makeTranslation: function ( x, y, z ) {
            this.set(
                1, 0, 0, x,
                0, 1, 0, y,
                0, 0, 1, z,
                0, 0, 0, 1
            );
            return this;
        },
        makeRotationX: function ( theta ) {
            var c = Math.cos( theta ), s = Math.sin( theta );
            this.set(
                1, 0, 0, 0,
                0, c, - s, 0,
                0, s, c, 0,
                0, 0, 0, 1
            );
            return this;
        },
        makeRotationY: function ( theta ) {
            var c = Math.cos( theta ), s = Math.sin( theta );
            this.set(
                 c, 0, s, 0,
                 0, 1, 0, 0,
                - s, 0, c, 0,
                 0, 0, 0, 1
            );
            return this;
        },
        makeRotationZ: function ( theta ) {
            var c = Math.cos( theta ), s = Math.sin( theta );
            this.set(
                c, - s, 0, 0,
                s, c, 0, 0,
                0, 0, 1, 0,
                0, 0, 0, 1
            );
            return this;
        },
        makeRotationAxis: function ( axis, angle ) {
            // Based on http://www.gamedev.net/reference/articles/article1199.asp
            var c = Math.cos( angle );
            var s = Math.sin( angle );
            var t = 1 - c;
            var x = axis.x, y = axis.y, z = axis.z;
            var tx = t * x, ty = t * y;
            this.set(
                tx * x + c, tx * y - s * z, tx * z + s * y, 0,
                tx * y + s * z, ty * y + c, ty * z - s * x, 0,
                tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
                0, 0, 0, 1
            );
             return this;
        },
        makeScale: function ( x, y, z ) {
            this.set(
                x, 0, 0, 0,
                0, y, 0, 0,
                0, 0, z, 0,
                0, 0, 0, 1
            );
            return this;
        },
        makeShear: function ( x, y, z ) {
            this.set(
                1, y, z, 0,
                x, 1, z, 0,
                x, y, 1, 0,
                0, 0, 0, 1
            );
            return this;
        },
        compose: function ( position, quaternion, scale ) {
            var te = this.elements;
            var x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
            var x2 = x + x,    y2 = y + y, z2 = z + z;
            var xx = x * x2, xy = x * y2, xz = x * z2;
            var yy = y * y2, yz = y * z2, zz = z * z2;
            var wx = w * x2, wy = w * y2, wz = w * z2;
            var sx = scale.x, sy = scale.y, sz = scale.z;
            te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
            te[ 1 ] = ( xy + wz ) * sx;
            te[ 2 ] = ( xz - wy ) * sx;
            te[ 3 ] = 0;
            te[ 4 ] = ( xy - wz ) * sy;
            te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
            te[ 6 ] = ( yz + wx ) * sy;
            te[ 7 ] = 0;
            te[ 8 ] = ( xz + wy ) * sz;
            te[ 9 ] = ( yz - wx ) * sz;
            te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
            te[ 11 ] = 0;
            te[ 12 ] = position.x;
            te[ 13 ] = position.y;
            te[ 14 ] = position.z;
            te[ 15 ] = 1;
            return this;
        },
        decompose: function ( position, quaternion, scale ) {
            var te = this.elements;
            var sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
            var sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
            var sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
            // if determine is negative, we need to invert one scale
            var det = this.determinant();
            if ( det < 0 ) { sx = - sx; }
            position.x = te[ 12 ];
            position.y = te[ 13 ];
            position.z = te[ 14 ];
            // scale the rotation part
            _m1.copy( this );
            var invSX = 1 / sx;
            var invSY = 1 / sy;
            var invSZ = 1 / sz;
            _m1.elements[ 0 ] *= invSX;
            _m1.elements[ 1 ] *= invSX;
            _m1.elements[ 2 ] *= invSX;
            _m1.elements[ 4 ] *= invSY;
            _m1.elements[ 5 ] *= invSY;
            _m1.elements[ 6 ] *= invSY;
            _m1.elements[ 8 ] *= invSZ;
            _m1.elements[ 9 ] *= invSZ;
            _m1.elements[ 10 ] *= invSZ;
            quaternion.setFromRotationMatrix( _m1 );
            scale.x = sx;
            scale.y = sy;
            scale.z = sz;
            return this;
        },
        makePerspective: function ( left, right, top, bottom, near, far ) {
            if ( far === undefined ) {
                console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
            }
            var te = this.elements;
            var x = 2 * near / ( right - left );
            var y = 2 * near / ( top - bottom );
            var a = ( right + left ) / ( right - left );
            var b = ( top + bottom ) / ( top - bottom );
            var c = - ( far + near ) / ( far - near );
            var d = - 2 * far * near / ( far - near );
            te[ 0 ] = x;    te[ 4 ] = 0;    te[ 8 ] = a;    te[ 12 ] = 0;
            te[ 1 ] = 0;    te[ 5 ] = y;    te[ 9 ] = b;    te[ 13 ] = 0;
            te[ 2 ] = 0;    te[ 6 ] = 0;    te[ 10 ] = c;    te[ 14 ] = d;
            te[ 3 ] = 0;    te[ 7 ] = 0;    te[ 11 ] = - 1;    te[ 15 ] = 0;
            return this;
        },
        makeOrthographic: function ( left, right, top, bottom, near, far ) {
            var te = this.elements;
            var w = 1.0 / ( right - left );
            var h = 1.0 / ( top - bottom );
            var p = 1.0 / ( far - near );
            var x = ( right + left ) * w;
            var y = ( top + bottom ) * h;
            var z = ( far + near ) * p;
            te[ 0 ] = 2 * w;    te[ 4 ] = 0;    te[ 8 ] = 0;    te[ 12 ] = - x;
            te[ 1 ] = 0;    te[ 5 ] = 2 * h;    te[ 9 ] = 0;    te[ 13 ] = - y;
            te[ 2 ] = 0;    te[ 6 ] = 0;    te[ 10 ] = - 2 * p;    te[ 14 ] = - z;
            te[ 3 ] = 0;    te[ 7 ] = 0;    te[ 11 ] = 0;    te[ 15 ] = 1;
            return this;
        },
        equals: function ( matrix ) {
            var te = this.elements;
            var me = matrix.elements;
            for ( var i = 0; i < 16; i ++ ) {
                if ( te[ i ] !== me[ i ] ) { return false; }
            }
            return true;
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            for ( var i = 0; i < 16; i ++ ) {
                this.elements[ i ] = array[ i + offset ];
            }
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            var te = this.elements;
            array[ offset ] = te[ 0 ];
            array[ offset + 1 ] = te[ 1 ];
            array[ offset + 2 ] = te[ 2 ];
            array[ offset + 3 ] = te[ 3 ];
            array[ offset + 4 ] = te[ 4 ];
            array[ offset + 5 ] = te[ 5 ];
            array[ offset + 6 ] = te[ 6 ];
            array[ offset + 7 ] = te[ 7 ];
            array[ offset + 8 ] = te[ 8 ];
            array[ offset + 9 ] = te[ 9 ];
            array[ offset + 10 ] = te[ 10 ];
            array[ offset + 11 ] = te[ 11 ];
            array[ offset + 12 ] = te[ 12 ];
            array[ offset + 13 ] = te[ 13 ];
            array[ offset + 14 ] = te[ 14 ];
            array[ offset + 15 ] = te[ 15 ];
            return array;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author WestLangley / http://github.com/WestLangley
     * @author bhouston / http://clara.io
     */
    var _matrix = new Matrix4();
    var _quaternion$1 = new Quaternion();
    function Euler( x, y, z, order ) {
        this._x = x || 0;
        this._y = y || 0;
        this._z = z || 0;
        this._order = order || Euler.DefaultOrder;
    }
    Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
    Euler.DefaultOrder = 'XYZ';
    Object.defineProperties( Euler.prototype, {
        x: {
            get: function () {
                return this._x;
            },
            set: function ( value ) {
                this._x = value;
                this._onChangeCallback();
            }
        },
        y: {
            get: function () {
                return this._y;
            },
            set: function ( value ) {
                this._y = value;
                this._onChangeCallback();
            }
        },
        z: {
            get: function () {
                return this._z;
            },
            set: function ( value ) {
                this._z = value;
                this._onChangeCallback();
            }
        },
        order: {
            get: function () {
                return this._order;
            },
            set: function ( value ) {
                this._order = value;
                this._onChangeCallback();
            }
        }
    } );
    Object.assign( Euler.prototype, {
        isEuler: true,
        set: function ( x, y, z, order ) {
            this._x = x;
            this._y = y;
            this._z = z;
            this._order = order || this._order;
            this._onChangeCallback();
            return this;
        },
        clone: function () {
            return new this.constructor( this._x, this._y, this._z, this._order );
        },
        copy: function ( euler ) {
            this._x = euler._x;
            this._y = euler._y;
            this._z = euler._z;
            this._order = euler._order;
            this._onChangeCallback();
            return this;
        },
        setFromRotationMatrix: function ( m, order, update ) {
            var clamp = MathUtils.clamp;
            // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
            var te = m.elements;
            var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
            var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
            var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
            order = order || this._order;
            switch ( order ) {
                case 'XYZ':
                    this._y = Math.asin( clamp( m13, - 1, 1 ) );
                    if ( Math.abs( m13 ) < 0.9999999 ) {
                        this._x = Math.atan2( - m23, m33 );
                        this._z = Math.atan2( - m12, m11 );
                    } else {
                        this._x = Math.atan2( m32, m22 );
                        this._z = 0;
                    }
                    break;
                case 'YXZ':
                    this._x = Math.asin( - clamp( m23, - 1, 1 ) );
                    if ( Math.abs( m23 ) < 0.9999999 ) {
                        this._y = Math.atan2( m13, m33 );
                        this._z = Math.atan2( m21, m22 );
                    } else {
                        this._y = Math.atan2( - m31, m11 );
                        this._z = 0;
                    }
                    break;
                case 'ZXY':
                    this._x = Math.asin( clamp( m32, - 1, 1 ) );
                    if ( Math.abs( m32 ) < 0.9999999 ) {
                        this._y = Math.atan2( - m31, m33 );
                        this._z = Math.atan2( - m12, m22 );
                    } else {
                        this._y = 0;
                        this._z = Math.atan2( m21, m11 );
                    }
                    break;
                case 'ZYX':
                    this._y = Math.asin( - clamp( m31, - 1, 1 ) );
                    if ( Math.abs( m31 ) < 0.9999999 ) {
                        this._x = Math.atan2( m32, m33 );
                        this._z = Math.atan2( m21, m11 );
                    } else {
                        this._x = 0;
                        this._z = Math.atan2( - m12, m22 );
                    }
                    break;
                case 'YZX':
                    this._z = Math.asin( clamp( m21, - 1, 1 ) );
                    if ( Math.abs( m21 ) < 0.9999999 ) {
                        this._x = Math.atan2( - m23, m22 );
                        this._y = Math.atan2( - m31, m11 );
                    } else {
                        this._x = 0;
                        this._y = Math.atan2( m13, m33 );
                    }
                    break;
                case 'XZY':
                    this._z = Math.asin( - clamp( m12, - 1, 1 ) );
                    if ( Math.abs( m12 ) < 0.9999999 ) {
                        this._x = Math.atan2( m32, m22 );
                        this._y = Math.atan2( m13, m11 );
                    } else {
                        this._x = Math.atan2( - m23, m33 );
                        this._y = 0;
                    }
                    break;
                default:
                    console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order );
            }
            this._order = order;
            if ( update !== false ) { this._onChangeCallback(); }
            return this;
        },
        setFromQuaternion: function ( q, order, update ) {
            _matrix.makeRotationFromQuaternion( q );
            return this.setFromRotationMatrix( _matrix, order, update );
        },
        setFromVector3: function ( v, order ) {
            return this.set( v.x, v.y, v.z, order || this._order );
        },
        reorder: function ( newOrder ) {
            // WARNING: this discards revolution information -bhouston
            _quaternion$1.setFromEuler( this );
            return this.setFromQuaternion( _quaternion$1, newOrder );
        },
        equals: function ( euler ) {
            return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
        },
        fromArray: function ( array ) {
            this._x = array[ 0 ];
            this._y = array[ 1 ];
            this._z = array[ 2 ];
            if ( array[ 3 ] !== undefined ) { this._order = array[ 3 ]; }
            this._onChangeCallback();
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            array[ offset ] = this._x;
            array[ offset + 1 ] = this._y;
            array[ offset + 2 ] = this._z;
            array[ offset + 3 ] = this._order;
            return array;
        },
        toVector3: function ( optionalResult ) {
            if ( optionalResult ) {
                return optionalResult.set( this._x, this._y, this._z );
            } else {
                return new Vector3( this._x, this._y, this._z );
            }
        },
        _onChange: function ( callback ) {
            this._onChangeCallback = callback;
            return this;
        },
        _onChangeCallback: function () {}
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function Layers() {
        this.mask = 1 | 0;
    }
    Object.assign( Layers.prototype, {
        set: function ( channel ) {
            this.mask = 1 << channel | 0;
        },
        enable: function ( channel ) {
            this.mask |= 1 << channel | 0;
        },
        enableAll: function () {
            this.mask = 0xffffffff | 0;
        },
        toggle: function ( channel ) {
            this.mask ^= 1 << channel | 0;
        },
        disable: function ( channel ) {
            this.mask &= ~ ( 1 << channel | 0 );
        },
        disableAll: function () {
            this.mask = 0;
        },
        test: function ( layers ) {
            return ( this.mask & layers.mask ) !== 0;
        }
    } );
    var _object3DId = 0;
    var _v1$1 = new Vector3();
    var _q1 = new Quaternion();
    var _m1$1 = new Matrix4();
    var _target = new Vector3();
    var _position = new Vector3();
    var _scale = new Vector3();
    var _quaternion$2 = new Quaternion();
    var _xAxis = new Vector3( 1, 0, 0 );
    var _yAxis = new Vector3( 0, 1, 0 );
    var _zAxis = new Vector3( 0, 0, 1 );
    var _addedEvent = { type: 'added' };
    var _removedEvent = { type: 'removed' };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     * @author WestLangley / http://github.com/WestLangley
     * @author elephantatwork / www.elephantatwork.ch
     */
    function Object3D() {
        Object.defineProperty( this, 'id', { value: _object3DId ++ } );
        this.uuid = MathUtils.generateUUID();
        this.name = '';
        this.type = 'Object3D';
        this.parent = null;
        this.children = [];
        this.up = Object3D.DefaultUp.clone();
        var position = new Vector3();
        var rotation = new Euler();
        var quaternion = new Quaternion();
        var scale = new Vector3( 1, 1, 1 );
        function onRotationChange() {
            quaternion.setFromEuler( rotation, false );
        }
        function onQuaternionChange() {
            rotation.setFromQuaternion( quaternion, undefined, false );
        }
        rotation._onChange( onRotationChange );
        quaternion._onChange( onQuaternionChange );
        Object.defineProperties( this, {
            position: {
                configurable: true,
                enumerable: true,
                value: position
            },
            rotation: {
                configurable: true,
                enumerable: true,
                value: rotation
            },
            quaternion: {
                configurable: true,
                enumerable: true,
                value: quaternion
            },
            scale: {
                configurable: true,
                enumerable: true,
                value: scale
            },
            modelViewMatrix: {
                value: new Matrix4()
            },
            normalMatrix: {
                value: new Matrix3()
            }
        } );
        this.matrix = new Matrix4();
        this.matrixWorld = new Matrix4();
        this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
        this.matrixWorldNeedsUpdate = false;
        this.layers = new Layers();
        this.visible = true;
        this.castShadow = false;
        this.receiveShadow = false;
        this.frustumCulled = true;
        this.renderOrder = 0;
        this.userData = {};
    }
    Object3D.DefaultUp = new Vector3( 0, 1, 0 );
    Object3D.DefaultMatrixAutoUpdate = true;
    Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
        constructor: Object3D,
        isObject3D: true,
        onBeforeRender: function () {},
        onAfterRender: function () {},
        applyMatrix4: function ( matrix ) {
            if ( this.matrixAutoUpdate ) { this.updateMatrix(); }
            this.matrix.premultiply( matrix );
            this.matrix.decompose( this.position, this.quaternion, this.scale );
        },
        applyQuaternion: function ( q ) {
            this.quaternion.premultiply( q );
            return this;
        },
        setRotationFromAxisAngle: function ( axis, angle ) {
            // assumes axis is normalized
            this.quaternion.setFromAxisAngle( axis, angle );
        },
        setRotationFromEuler: function ( euler ) {
            this.quaternion.setFromEuler( euler, true );
        },
        setRotationFromMatrix: function ( m ) {
            // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
            this.quaternion.setFromRotationMatrix( m );
        },
        setRotationFromQuaternion: function ( q ) {
            // assumes q is normalized
            this.quaternion.copy( q );
        },
        rotateOnAxis: function ( axis, angle ) {
            // rotate object on axis in object space
            // axis is assumed to be normalized
            _q1.setFromAxisAngle( axis, angle );
            this.quaternion.multiply( _q1 );
            return this;
        },
        rotateOnWorldAxis: function ( axis, angle ) {
            // rotate object on axis in world space
            // axis is assumed to be normalized
            // method assumes no rotated parent
            _q1.setFromAxisAngle( axis, angle );
            this.quaternion.premultiply( _q1 );
            return this;
        },
        rotateX: function ( angle ) {
            return this.rotateOnAxis( _xAxis, angle );
        },
        rotateY: function ( angle ) {
            return this.rotateOnAxis( _yAxis, angle );
        },
        rotateZ: function ( angle ) {
            return this.rotateOnAxis( _zAxis, angle );
        },
        translateOnAxis: function ( axis, distance ) {
            // translate object by distance along axis in object space
            // axis is assumed to be normalized
            _v1$1.copy( axis ).applyQuaternion( this.quaternion );
            this.position.add( _v1$1.multiplyScalar( distance ) );
            return this;
        },
        translateX: function ( distance ) {
            return this.translateOnAxis( _xAxis, distance );
        },
        translateY: function ( distance ) {
            return this.translateOnAxis( _yAxis, distance );
        },
        translateZ: function ( distance ) {
            return this.translateOnAxis( _zAxis, distance );
        },
        localToWorld: function ( vector ) {
            return vector.applyMatrix4( this.matrixWorld );
        },
        worldToLocal: function ( vector ) {
            return vector.applyMatrix4( _m1$1.getInverse( this.matrixWorld ) );
        },
        lookAt: function ( x, y, z ) {
            // This method does not support objects having non-uniformly-scaled parent(s)
            if ( x.isVector3 ) {
                _target.copy( x );
            } else {
                _target.set( x, y, z );
            }
            var parent = this.parent;
            this.updateWorldMatrix( true, false );
            _position.setFromMatrixPosition( this.matrixWorld );
            if ( this.isCamera || this.isLight ) {
                _m1$1.lookAt( _position, _target, this.up );
            } else {
                _m1$1.lookAt( _target, _position, this.up );
            }
            this.quaternion.setFromRotationMatrix( _m1$1 );
            if ( parent ) {
                _m1$1.extractRotation( parent.matrixWorld );
                _q1.setFromRotationMatrix( _m1$1 );
                this.quaternion.premultiply( _q1.inverse() );
            }
        },
        add: function ( object ) {
            if ( arguments.length > 1 ) {
                for ( var i = 0; i < arguments.length; i ++ ) {
                    this.add( arguments[ i ] );
                }
                return this;
            }
            if ( object === this ) {
                console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
                return this;
            }
            if ( ( object && object.isObject3D ) ) {
                if ( object.parent !== null ) {
                    object.parent.remove( object );
                }
                object.parent = this;
                this.children.push( object );
                object.dispatchEvent( _addedEvent );
            } else {
                console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
            }
            return this;
        },
        remove: function ( object ) {
            if ( arguments.length > 1 ) {
                for ( var i = 0; i < arguments.length; i ++ ) {
                    this.remove( arguments[ i ] );
                }
                return this;
            }
            var index = this.children.indexOf( object );
            if ( index !== - 1 ) {
                object.parent = null;
                this.children.splice( index, 1 );
                object.dispatchEvent( _removedEvent );
            }
            return this;
        },
        attach: function ( object ) {
            // adds object as a child of this, while maintaining the object's world transform
            this.updateWorldMatrix( true, false );
            _m1$1.getInverse( this.matrixWorld );
            if ( object.parent !== null ) {
                object.parent.updateWorldMatrix( true, false );
                _m1$1.multiply( object.parent.matrixWorld );
            }
            object.applyMatrix4( _m1$1 );
            object.updateWorldMatrix( false, false );
            this.add( object );
            return this;
        },
        getObjectById: function ( id ) {
            return this.getObjectByProperty( 'id', id );
        },
        getObjectByName: function ( name ) {
            return this.getObjectByProperty( 'name', name );
        },
        getObjectByProperty: function ( name, value ) {
            if ( this[ name ] === value ) { return this; }
            for ( var i = 0, l = this.children.length; i < l; i ++ ) {
                var child = this.children[ i ];
                var object = child.getObjectByProperty( name, value );
                if ( object !== undefined ) {
                    return object;
                }
            }
            return undefined;
        },
        getWorldPosition: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' );
                target = new Vector3();
            }
            this.updateMatrixWorld( true );
            return target.setFromMatrixPosition( this.matrixWorld );
        },
        getWorldQuaternion: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' );
                target = new Quaternion();
            }
            this.updateMatrixWorld( true );
            this.matrixWorld.decompose( _position, target, _scale );
            return target;
        },
        getWorldScale: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Object3D: .getWorldScale() target is now required' );
                target = new Vector3();
            }
            this.updateMatrixWorld( true );
            this.matrixWorld.decompose( _position, _quaternion$2, target );
            return target;
        },
        getWorldDirection: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' );
                target = new Vector3();
            }
            this.updateMatrixWorld( true );
            var e = this.matrixWorld.elements;
            return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();
        },
        raycast: function () {},
        traverse: function ( callback ) {
            callback( this );
            var children = this.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                children[ i ].traverse( callback );
            }
        },
        traverseVisible: function ( callback ) {
            if ( this.visible === false ) { return; }
            callback( this );
            var children = this.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                children[ i ].traverseVisible( callback );
            }
        },
        traverseAncestors: function ( callback ) {
            var parent = this.parent;
            if ( parent !== null ) {
                callback( parent );
                parent.traverseAncestors( callback );
            }
        },
        updateMatrix: function () {
            this.matrix.compose( this.position, this.quaternion, this.scale );
            this.matrixWorldNeedsUpdate = true;
        },
        updateMatrixWorld: function ( force ) {
            if ( this.matrixAutoUpdate ) { this.updateMatrix(); }
            if ( this.matrixWorldNeedsUpdate || force ) {
                if ( this.parent === null ) {
                    this.matrixWorld.copy( this.matrix );
                } else {
                    this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
                }
                this.matrixWorldNeedsUpdate = false;
                force = true;
            }
            // update children
            var children = this.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                children[ i ].updateMatrixWorld( force );
            }
        },
        updateWorldMatrix: function ( updateParents, updateChildren ) {
            var parent = this.parent;
            if ( updateParents === true && parent !== null ) {
                parent.updateWorldMatrix( true, false );
            }
            if ( this.matrixAutoUpdate ) { this.updateMatrix(); }
            if ( this.parent === null ) {
                this.matrixWorld.copy( this.matrix );
            } else {
                this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
            }
            // update children
            if ( updateChildren === true ) {
                var children = this.children;
                for ( var i = 0, l = children.length; i < l; i ++ ) {
                    children[ i ].updateWorldMatrix( false, true );
                }
            }
        },
        toJSON: function ( meta ) {
            // meta is a string when called from JSON.stringify
            var isRootObject = ( meta === undefined || typeof meta === 'string' );
            var output = {};
            // meta is a hash used to collect geometries, materials.
            // not providing it implies that this is the root object
            // being serialized.
            if ( isRootObject ) {
                // initialize meta obj
                meta = {
                    geometries: {},
                    materials: {},
                    textures: {},
                    images: {},
                    shapes: {}
                };
                output.metadata = {
                    version: 4.5,
                    type: 'Object',
                    generator: 'Object3D.toJSON'
                };
            }
            // standard Object3D serialization
            var object = {};
            object.uuid = this.uuid;
            object.type = this.type;
            if ( this.name !== '' ) { object.name = this.name; }
            if ( this.castShadow === true ) { object.castShadow = true; }
            if ( this.receiveShadow === true ) { object.receiveShadow = true; }
            if ( this.visible === false ) { object.visible = false; }
            if ( this.frustumCulled === false ) { object.frustumCulled = false; }
            if ( this.renderOrder !== 0 ) { object.renderOrder = this.renderOrder; }
            if ( JSON.stringify( this.userData ) !== '{}' ) { object.userData = this.userData; }
            object.layers = this.layers.mask;
            object.matrix = this.matrix.toArray();
            if ( this.matrixAutoUpdate === false ) { object.matrixAutoUpdate = false; }
            // object specific properties
            if ( this.isInstancedMesh ) {
                object.type = 'InstancedMesh';
                object.count = this.count;
                object.instanceMatrix = this.instanceMatrix.toJSON();
            }
            //
            function serialize( library, element ) {
                if ( library[ element.uuid ] === undefined ) {
                    library[ element.uuid ] = element.toJSON( meta );
                }
                return element.uuid;
            }
            if ( this.isMesh || this.isLine || this.isPoints ) {
                object.geometry = serialize( meta.geometries, this.geometry );
                var parameters = this.geometry.parameters;
                if ( parameters !== undefined && parameters.shapes !== undefined ) {
                    var shapes = parameters.shapes;
                    if ( Array.isArray( shapes ) ) {
                        for ( var i = 0, l = shapes.length; i < l; i ++ ) {
                            var shape = shapes[ i ];
                            serialize( meta.shapes, shape );
                        }
                    } else {
                        serialize( meta.shapes, shapes );
                    }
                }
            }
            if ( this.material !== undefined ) {
                if ( Array.isArray( this.material ) ) {
                    var uuids = [];
                    for ( var i = 0, l = this.material.length; i < l; i ++ ) {
                        uuids.push( serialize( meta.materials, this.material[ i ] ) );
                    }
                    object.material = uuids;
                } else {
                    object.material = serialize( meta.materials, this.material );
                }
            }
            //
            if ( this.children.length > 0 ) {
                object.children = [];
                for ( var i = 0; i < this.children.length; i ++ ) {
                    object.children.push( this.children[ i ].toJSON( meta ).object );
                }
            }
            if ( isRootObject ) {
                var geometries = extractFromCache( meta.geometries );
                var materials = extractFromCache( meta.materials );
                var textures = extractFromCache( meta.textures );
                var images = extractFromCache( meta.images );
                var shapes = extractFromCache( meta.shapes );
                if ( geometries.length > 0 ) { output.geometries = geometries; }
                if ( materials.length > 0 ) { output.materials = materials; }
                if ( textures.length > 0 ) { output.textures = textures; }
                if ( images.length > 0 ) { output.images = images; }
                if ( shapes.length > 0 ) { output.shapes = shapes; }
            }
            output.object = object;
            return output;
            // extract data from the cache hash
            // remove metadata on each item
            // and return as array
            function extractFromCache( cache ) {
                var values = [];
                for ( var key in cache ) {
                    var data = cache[ key ];
                    delete data.metadata;
                    values.push( data );
                }
                return values;
            }
        },
        clone: function ( recursive ) {
            return new this.constructor().copy( this, recursive );
        },
        copy: function ( source, recursive ) {
            if ( recursive === undefined ) { recursive = true; }
            this.name = source.name;
            this.up.copy( source.up );
            this.position.copy( source.position );
            this.quaternion.copy( source.quaternion );
            this.scale.copy( source.scale );
            this.matrix.copy( source.matrix );
            this.matrixWorld.copy( source.matrixWorld );
            this.matrixAutoUpdate = source.matrixAutoUpdate;
            this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
            this.layers.mask = source.layers.mask;
            this.visible = source.visible;
            this.castShadow = source.castShadow;
            this.receiveShadow = source.receiveShadow;
            this.frustumCulled = source.frustumCulled;
            this.renderOrder = source.renderOrder;
            this.userData = JSON.parse( JSON.stringify( source.userData ) );
            if ( recursive === true ) {
                for ( var i = 0; i < source.children.length; i ++ ) {
                    var child = source.children[ i ];
                    this.add( child.clone() );
                }
            }
            return this;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function Scene() {
        Object3D.call( this );
        this.type = 'Scene';
        this.background = null;
        this.environment = null;
        this.fog = null;
        this.overrideMaterial = null;
        this.autoUpdate = true; // checked by the renderer
        if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
            __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef
        }
    }
    Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Scene,
        isScene: true,
        copy: function ( source, recursive ) {
            Object3D.prototype.copy.call( this, source, recursive );
            if ( source.background !== null ) { this.background = source.background.clone(); }
            if ( source.environment !== null ) { this.environment = source.environment.clone(); }
            if ( source.fog !== null ) { this.fog = source.fog.clone(); }
            if ( source.overrideMaterial !== null ) { this.overrideMaterial = source.overrideMaterial.clone(); }
            this.autoUpdate = source.autoUpdate;
            this.matrixAutoUpdate = source.matrixAutoUpdate;
            return this;
        },
        toJSON: function ( meta ) {
            var data = Object3D.prototype.toJSON.call( this, meta );
            if ( this.background !== null ) { data.object.background = this.background.toJSON( meta ); }
            if ( this.environment !== null ) { data.object.environment = this.environment.toJSON( meta ); }
            if ( this.fog !== null ) { data.object.fog = this.fog.toJSON(); }
            return data;
        },
        dispose: function () {
            this.dispatchEvent( { type: 'dispose' } );
        }
    } );
    var _points = [
        new Vector3(),
        new Vector3(),
        new Vector3(),
        new Vector3(),
        new Vector3(),
        new Vector3(),
        new Vector3(),
        new Vector3()
    ];
    var _vector$1 = new Vector3();
    var _box = new Box3();
    // triangle centered vertices
    var _v0 = new Vector3();
    var _v1$2 = new Vector3();
    var _v2 = new Vector3();
    // triangle edge vectors
    var _f0 = new Vector3();
    var _f1 = new Vector3();
    var _f2 = new Vector3();
    var _center = new Vector3();
    var _extents = new Vector3();
    var _triangleNormal = new Vector3();
    var _testAxis = new Vector3();
    /**
     * @author bhouston / http://clara.io
     * @author WestLangley / http://github.com/WestLangley
     */
    function Box3( min, max ) {
        this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
        this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );
    }
    Object.assign( Box3.prototype, {
        isBox3: true,
        set: function ( min, max ) {
            this.min.copy( min );
            this.max.copy( max );
            return this;
        },
        setFromArray: function ( array ) {
            var minX = + Infinity;
            var minY = + Infinity;
            var minZ = + Infinity;
            var maxX = - Infinity;
            var maxY = - Infinity;
            var maxZ = - Infinity;
            for ( var i = 0, l = array.length; i < l; i += 3 ) {
                var x = array[ i ];
                var y = array[ i + 1 ];
                var z = array[ i + 2 ];
                if ( x < minX ) { minX = x; }
                if ( y < minY ) { minY = y; }
                if ( z < minZ ) { minZ = z; }
                if ( x > maxX ) { maxX = x; }
                if ( y > maxY ) { maxY = y; }
                if ( z > maxZ ) { maxZ = z; }
            }
            this.min.set( minX, minY, minZ );
            this.max.set( maxX, maxY, maxZ );
            return this;
        },
        setFromBufferAttribute: function ( attribute ) {
            var minX = + Infinity;
            var minY = + Infinity;
            var minZ = + Infinity;
            var maxX = - Infinity;
            var maxY = - Infinity;
            var maxZ = - Infinity;
            for ( var i = 0, l = attribute.count; i < l; i ++ ) {
                var x = attribute.getX( i );
                var y = attribute.getY( i );
                var z = attribute.getZ( i );
                if ( x < minX ) { minX = x; }
                if ( y < minY ) { minY = y; }
                if ( z < minZ ) { minZ = z; }
                if ( x > maxX ) { maxX = x; }
                if ( y > maxY ) { maxY = y; }
                if ( z > maxZ ) { maxZ = z; }
            }
            this.min.set( minX, minY, minZ );
            this.max.set( maxX, maxY, maxZ );
            return this;
        },
        setFromPoints: function ( points ) {
            this.makeEmpty();
            for ( var i = 0, il = points.length; i < il; i ++ ) {
                this.expandByPoint( points[ i ] );
            }
            return this;
        },
        setFromCenterAndSize: function ( center, size ) {
            var halfSize = _vector$1.copy( size ).multiplyScalar( 0.5 );
            this.min.copy( center ).sub( halfSize );
            this.max.copy( center ).add( halfSize );
            return this;
        },
        setFromObject: function ( object ) {
            this.makeEmpty();
            return this.expandByObject( object );
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( box ) {
            this.min.copy( box.min );
            this.max.copy( box.max );
            return this;
        },
        makeEmpty: function () {
            this.min.x = this.min.y = this.min.z = + Infinity;
            this.max.x = this.max.y = this.max.z = - Infinity;
            return this;
        },
        isEmpty: function () {
            // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
            return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
        },
        getCenter: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Box3: .getCenter() target is now required' );
                target = new Vector3();
            }
            return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
        },
        getSize: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Box3: .getSize() target is now required' );
                target = new Vector3();
            }
            return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
        },
        expandByPoint: function ( point ) {
            this.min.min( point );
            this.max.max( point );
            return this;
        },
        expandByVector: function ( vector ) {
            this.min.sub( vector );
            this.max.add( vector );
            return this;
        },
        expandByScalar: function ( scalar ) {
            this.min.addScalar( - scalar );
            this.max.addScalar( scalar );
            return this;
        },
        expandByObject: function ( object ) {
            // Computes the world-axis-aligned bounding box of an object (including its children),
            // accounting for both the object's, and children's, world transforms
            object.updateWorldMatrix( false, false );
            var geometry = object.geometry;
            if ( geometry !== undefined ) {
                if ( geometry.boundingBox === null ) {
                    geometry.computeBoundingBox();
                }
                _box.copy( geometry.boundingBox );
                _box.applyMatrix4( object.matrixWorld );
                this.union( _box );
            }
            var children = object.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                this.expandByObject( children[ i ] );
            }
            return this;
        },
        containsPoint: function ( point ) {
            return point.x < this.min.x || point.x > this.max.x ||
                point.y < this.min.y || point.y > this.max.y ||
                point.z < this.min.z || point.z > this.max.z ? false : true;
        },
        containsBox: function ( box ) {
            return this.min.x <= box.min.x && box.max.x <= this.max.x &&
                this.min.y <= box.min.y && box.max.y <= this.max.y &&
                this.min.z <= box.min.z && box.max.z <= this.max.z;
        },
        getParameter: function ( point, target ) {
            // This can potentially have a divide by zero if the box
            // has a size dimension of 0.
            if ( target === undefined ) {
                console.warn( 'THREE.Box3: .getParameter() target is now required' );
                target = new Vector3();
            }
            return target.set(
                ( point.x - this.min.x ) / ( this.max.x - this.min.x ),
                ( point.y - this.min.y ) / ( this.max.y - this.min.y ),
                ( point.z - this.min.z ) / ( this.max.z - this.min.z )
            );
        },
        intersectsBox: function ( box ) {
            // using 6 splitting planes to rule out intersections.
            return box.max.x < this.min.x || box.min.x > this.max.x ||
                box.max.y < this.min.y || box.min.y > this.max.y ||
                box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
        },
        intersectsSphere: function ( sphere ) {
            // Find the point on the AABB closest to the sphere center.
            this.clampPoint( sphere.center, _vector$1 );
            // If that point is inside the sphere, the AABB and sphere intersect.
            return _vector$1.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
        },
        intersectsPlane: function ( plane ) {
            // We compute the minimum and maximum dot product values. If those values
            // are on the same side (back or front) of the plane, then there is no intersection.
            var min, max;
            if ( plane.normal.x > 0 ) {
                min = plane.normal.x * this.min.x;
                max = plane.normal.x * this.max.x;
            } else {
                min = plane.normal.x * this.max.x;
                max = plane.normal.x * this.min.x;
            }
            if ( plane.normal.y > 0 ) {
                min += plane.normal.y * this.min.y;
                max += plane.normal.y * this.max.y;
            } else {
                min += plane.normal.y * this.max.y;
                max += plane.normal.y * this.min.y;
            }
            if ( plane.normal.z > 0 ) {
                min += plane.normal.z * this.min.z;
                max += plane.normal.z * this.max.z;
            } else {
                min += plane.normal.z * this.max.z;
                max += plane.normal.z * this.min.z;
            }
            return ( min <= - plane.constant && max >= - plane.constant );
        },
        intersectsTriangle: function ( triangle ) {
            if ( this.isEmpty() ) {
                return false;
            }
            // compute box center and extents
            this.getCenter( _center );
            _extents.subVectors( this.max, _center );
            // translate triangle to aabb origin
            _v0.subVectors( triangle.a, _center );
            _v1$2.subVectors( triangle.b, _center );
            _v2.subVectors( triangle.c, _center );
            // compute edge vectors for triangle
            _f0.subVectors( _v1$2, _v0 );
            _f1.subVectors( _v2, _v1$2 );
            _f2.subVectors( _v0, _v2 );
            // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
            // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
            // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
            var axes = [
                0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
                _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
                - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
            ];
            if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {
                return false;
            }
            // test 3 face normals from the aabb
            axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
            if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {
                return false;
            }
            // finally testing the face normal of the triangle
            // use already existing triangle edge vectors here
            _triangleNormal.crossVectors( _f0, _f1 );
            axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];
            return satForAxes( axes, _v0, _v1$2, _v2, _extents );
        },
        clampPoint: function ( point, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Box3: .clampPoint() target is now required' );
                target = new Vector3();
            }
            return target.copy( point ).clamp( this.min, this.max );
        },
        distanceToPoint: function ( point ) {
            var clampedPoint = _vector$1.copy( point ).clamp( this.min, this.max );
            return clampedPoint.sub( point ).length();
        },
        getBoundingSphere: function ( target ) {
            if ( target === undefined ) {
                console.error( 'THREE.Box3: .getBoundingSphere() target is now required' );
                //target = new Sphere(); // removed to avoid cyclic dependency
            }
            this.getCenter( target.center );
            target.radius = this.getSize( _vector$1 ).length() * 0.5;
            return target;
        },
        intersect: function ( box ) {
            this.min.max( box.min );
            this.max.min( box.max );
            // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
            if ( this.isEmpty() ) { this.makeEmpty(); }
            return this;
        },
        union: function ( box ) {
            this.min.min( box.min );
            this.max.max( box.max );
            return this;
        },
        applyMatrix4: function ( matrix ) {
            // transform of empty box is an empty box.
            if ( this.isEmpty() ) { return this; }
            // NOTE: I am using a binary pattern to specify all 2^3 combinations below
            _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
            _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
            _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
            _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
            _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
            _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
            _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
            _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
            this.setFromPoints( _points );
            return this;
        },
        translate: function ( offset ) {
            this.min.add( offset );
            this.max.add( offset );
            return this;
        },
        equals: function ( box ) {
            return box.min.equals( this.min ) && box.max.equals( this.max );
        }
    } );
    function satForAxes( axes, v0, v1, v2, extents ) {
        var i, j;
        for ( i = 0, j = axes.length - 3; i <= j; i += 3 ) {
            _testAxis.fromArray( axes, i );
            // project the aabb onto the seperating axis
            var r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
            // project all 3 vertices of the triangle onto the seperating axis
            var p0 = v0.dot( _testAxis );
            var p1 = v1.dot( _testAxis );
            var p2 = v2.dot( _testAxis );
            // actual test, basically see if either of the most extreme of the triangle points intersects r
            if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
                // points of the projected triangle are outside the projected half-length of the aabb
                // the axis is seperating and we can exit
                return false;
            }
        }
        return true;
    }
    var _box$1 = new Box3();
    /**
     * @author bhouston / http://clara.io
     * @author mrdoob / http://mrdoob.com/
     */
    function Sphere( center, radius ) {
        this.center = ( center !== undefined ) ? center : new Vector3();
        this.radius = ( radius !== undefined ) ? radius : - 1;
    }
    Object.assign( Sphere.prototype, {
        set: function ( center, radius ) {
            this.center.copy( center );
            this.radius = radius;
            return this;
        },
        setFromPoints: function ( points, optionalCenter ) {
            var center = this.center;
            if ( optionalCenter !== undefined ) {
                center.copy( optionalCenter );
            } else {
                _box$1.setFromPoints( points ).getCenter( center );
            }
            var maxRadiusSq = 0;
            for ( var i = 0, il = points.length; i < il; i ++ ) {
                maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
            }
            this.radius = Math.sqrt( maxRadiusSq );
            return this;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( sphere ) {
            this.center.copy( sphere.center );
            this.radius = sphere.radius;
            return this;
        },
        isEmpty: function () {
            return ( this.radius < 0 );
        },
        makeEmpty: function () {
            this.center.set( 0, 0, 0 );
            this.radius = - 1;
            return this;
        },
        containsPoint: function ( point ) {
            return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
        },
        distanceToPoint: function ( point ) {
            return ( point.distanceTo( this.center ) - this.radius );
        },
        intersectsSphere: function ( sphere ) {
            var radiusSum = this.radius + sphere.radius;
            return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
        },
        intersectsBox: function ( box ) {
            return box.intersectsSphere( this );
        },
        intersectsPlane: function ( plane ) {
            return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;
        },
        clampPoint: function ( point, target ) {
            var deltaLengthSq = this.center.distanceToSquared( point );
            if ( target === undefined ) {
                console.warn( 'THREE.Sphere: .clampPoint() target is now required' );
                target = new Vector3();
            }
            target.copy( point );
            if ( deltaLengthSq > ( this.radius * this.radius ) ) {
                target.sub( this.center ).normalize();
                target.multiplyScalar( this.radius ).add( this.center );
            }
            return target;
        },
        getBoundingBox: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );
                target = new Box3();
            }
            if ( this.isEmpty() ) {
                // Empty sphere produces empty bounding box
                target.makeEmpty();
                return target;
            }
            target.set( this.center, this.center );
            target.expandByScalar( this.radius );
            return target;
        },
        applyMatrix4: function ( matrix ) {
            this.center.applyMatrix4( matrix );
            this.radius = this.radius * matrix.getMaxScaleOnAxis();
            return this;
        },
        translate: function ( offset ) {
            this.center.add( offset );
            return this;
        },
        equals: function ( sphere ) {
            return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
        }
    } );
    var _vector$2 = new Vector3();
    var _segCenter = new Vector3();
    var _segDir = new Vector3();
    var _diff = new Vector3();
    var _edge1 = new Vector3();
    var _edge2 = new Vector3();
    var _normal = new Vector3();
    /**
     * @author bhouston / http://clara.io
     */
    function Ray( origin, direction ) {
        this.origin = ( origin !== undefined ) ? origin : new Vector3();
        this.direction = ( direction !== undefined ) ? direction : new Vector3( 0, 0, - 1 );
    }
    Object.assign( Ray.prototype, {
        set: function ( origin, direction ) {
            this.origin.copy( origin );
            this.direction.copy( direction );
            return this;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( ray ) {
            this.origin.copy( ray.origin );
            this.direction.copy( ray.direction );
            return this;
        },
        at: function ( t, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Ray: .at() target is now required' );
                target = new Vector3();
            }
            return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );
        },
        lookAt: function ( v ) {
            this.direction.copy( v ).sub( this.origin ).normalize();
            return this;
        },
        recast: function ( t ) {
            this.origin.copy( this.at( t, _vector$2 ) );
            return this;
        },
        closestPointToPoint: function ( point, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
                target = new Vector3();
            }
            target.subVectors( point, this.origin );
            var directionDistance = target.dot( this.direction );
            if ( directionDistance < 0 ) {
                return target.copy( this.origin );
            }
            return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
        },
        distanceToPoint: function ( point ) {
            return Math.sqrt( this.distanceSqToPoint( point ) );
        },
        distanceSqToPoint: function ( point ) {
            var directionDistance = _vector$2.subVectors( point, this.origin ).dot( this.direction );
            // point behind the ray
            if ( directionDistance < 0 ) {
                return this.origin.distanceToSquared( point );
            }
            _vector$2.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
            return _vector$2.distanceToSquared( point );
        },
        distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
            // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
            // It returns the min distance between the ray and the segment
            // defined by v0 and v1
            // It can also set two optional targets :
            // - The closest point on the ray
            // - The closest point on the segment
            _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
            _segDir.copy( v1 ).sub( v0 ).normalize();
            _diff.copy( this.origin ).sub( _segCenter );
            var segExtent = v0.distanceTo( v1 ) * 0.5;
            var a01 = - this.direction.dot( _segDir );
            var b0 = _diff.dot( this.direction );
            var b1 = - _diff.dot( _segDir );
            var c = _diff.lengthSq();
            var det = Math.abs( 1 - a01 * a01 );
            var s0, s1, sqrDist, extDet;
            if ( det > 0 ) {
                // The ray and segment are not parallel.
                s0 = a01 * b1 - b0;
                s1 = a01 * b0 - b1;
                extDet = segExtent * det;
                if ( s0 >= 0 ) {
                    if ( s1 >= - extDet ) {
                        if ( s1 <= extDet ) {
                            // region 0
                            // Minimum at interior points of ray and segment.
                            var invDet = 1 / det;
                            s0 *= invDet;
                            s1 *= invDet;
                            sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
                        } else {
                            // region 1
                            s1 = segExtent;
                            s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
                            sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
                        }
                    } else {
                        // region 5
                        s1 = - segExtent;
                        s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
                        sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
                    }
                } else {
                    if ( s1 <= - extDet ) {
                        // region 4
                        s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
                        s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
                        sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
                    } else if ( s1 <= extDet ) {
                        // region 3
                        s0 = 0;
                        s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
                        sqrDist = s1 * ( s1 + 2 * b1 ) + c;
                    } else {
                        // region 2
                        s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
                        s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
                        sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
                    }
                }
            } else {
                // Ray and segment are parallel.
                s1 = ( a01 > 0 ) ? - segExtent : segExtent;
                s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
                sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
            }
            if ( optionalPointOnRay ) {
                optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
            }
            if ( optionalPointOnSegment ) {
                optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter );
            }
            return sqrDist;
        },
        intersectSphere: function ( sphere, target ) {
            _vector$2.subVectors( sphere.center, this.origin );
            var tca = _vector$2.dot( this.direction );
            var d2 = _vector$2.dot( _vector$2 ) - tca * tca;
            var radius2 = sphere.radius * sphere.radius;
            if ( d2 > radius2 ) { return null; }
            var thc = Math.sqrt( radius2 - d2 );
            // t0 = first intersect point - entrance on front of sphere
            var t0 = tca - thc;
            // t1 = second intersect point - exit point on back of sphere
            var t1 = tca + thc;
            // test to see if both t0 and t1 are behind the ray - if so, return null
            if ( t0 < 0 && t1 < 0 ) { return null; }
            // test to see if t0 is behind the ray:
            // if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
            // in order to always return an intersect point that is in front of the ray.
            if ( t0 < 0 ) { return this.at( t1, target ); }
            // else t0 is in front of the ray, so return the first collision point scaled by t0
            return this.at( t0, target );
        },
        intersectsSphere: function ( sphere ) {
            return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );
        },
        distanceToPlane: function ( plane ) {
            var denominator = plane.normal.dot( this.direction );
            if ( denominator === 0 ) {
                // line is coplanar, return origin
                if ( plane.distanceToPoint( this.origin ) === 0 ) {
                    return 0;
                }
                // Null is preferable to undefined since undefined means.... it is undefined
                return null;
            }
            var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
            // Return if the ray never intersects the plane
            return t >= 0 ? t : null;
        },
        intersectPlane: function ( plane, target ) {
            var t = this.distanceToPlane( plane );
            if ( t === null ) {
                return null;
            }
            return this.at( t, target );
        },
        intersectsPlane: function ( plane ) {
            // check if the ray lies on the plane first
            var distToPoint = plane.distanceToPoint( this.origin );
            if ( distToPoint === 0 ) {
                return true;
            }
            var denominator = plane.normal.dot( this.direction );
            if ( denominator * distToPoint < 0 ) {
                return true;
            }
            // ray origin is behind the plane (and is pointing behind it)
            return false;
        },
        intersectBox: function ( box, target ) {
            var tmin, tmax, tymin, tymax, tzmin, tzmax;
            var invdirx = 1 / this.direction.x,
                invdiry = 1 / this.direction.y,
                invdirz = 1 / this.direction.z;
            var origin = this.origin;
            if ( invdirx >= 0 ) {
                tmin = ( box.min.x - origin.x ) * invdirx;
                tmax = ( box.max.x - origin.x ) * invdirx;
            } else {
                tmin = ( box.max.x - origin.x ) * invdirx;
                tmax = ( box.min.x - origin.x ) * invdirx;
            }
            if ( invdiry >= 0 ) {
                tymin = ( box.min.y - origin.y ) * invdiry;
                tymax = ( box.max.y - origin.y ) * invdiry;
            } else {
                tymin = ( box.max.y - origin.y ) * invdiry;
                tymax = ( box.min.y - origin.y ) * invdiry;
            }
            if ( ( tmin > tymax ) || ( tymin > tmax ) ) { return null; }
            // These lines also handle the case where tmin or tmax is NaN
            // (result of 0 * Infinity). x !== x returns true if x is NaN
            if ( tymin > tmin || tmin !== tmin ) { tmin = tymin; }
            if ( tymax < tmax || tmax !== tmax ) { tmax = tymax; }
            if ( invdirz >= 0 ) {
                tzmin = ( box.min.z - origin.z ) * invdirz;
                tzmax = ( box.max.z - origin.z ) * invdirz;
            } else {
                tzmin = ( box.max.z - origin.z ) * invdirz;
                tzmax = ( box.min.z - origin.z ) * invdirz;
            }
            if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) { return null; }
            if ( tzmin > tmin || tmin !== tmin ) { tmin = tzmin; }
            if ( tzmax < tmax || tmax !== tmax ) { tmax = tzmax; }
            //return point closest to the ray (positive side)
            if ( tmax < 0 ) { return null; }
            return this.at( tmin >= 0 ? tmin : tmax, target );
        },
        intersectsBox: function ( box ) {
            return this.intersectBox( box, _vector$2 ) !== null;
        },
        intersectTriangle: function ( a, b, c, backfaceCulling, target ) {
            // Compute the offset origin, edges, and normal.
            // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
            _edge1.subVectors( b, a );
            _edge2.subVectors( c, a );
            _normal.crossVectors( _edge1, _edge2 );
            // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
            // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
            // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
            // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
            // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
            var DdN = this.direction.dot( _normal );
            var sign;
            if ( DdN > 0 ) {
                if ( backfaceCulling ) { return null; }
                sign = 1;
            } else if ( DdN < 0 ) {
                sign = - 1;
                DdN = - DdN;
            } else {
                return null;
            }
            _diff.subVectors( this.origin, a );
            var DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );
            // b1 < 0, no intersection
            if ( DdQxE2 < 0 ) {
                return null;
            }
            var DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );
            // b2 < 0, no intersection
            if ( DdE1xQ < 0 ) {
                return null;
            }
            // b1+b2 > 1, no intersection
            if ( DdQxE2 + DdE1xQ > DdN ) {
                return null;
            }
            // Line intersects triangle, check if ray does.
            var QdN = - sign * _diff.dot( _normal );
            // t < 0, no intersection
            if ( QdN < 0 ) {
                return null;
            }
            // Ray intersects triangle.
            return this.at( QdN / DdN, target );
        },
        applyMatrix4: function ( matrix4 ) {
            this.origin.applyMatrix4( matrix4 );
            this.direction.transformDirection( matrix4 );
            return this;
        },
        equals: function ( ray ) {
            return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
        }
    } );
    /**
     * @author bhouston / http://clara.io
     */
    var _vector1 = new Vector3();
    var _vector2 = new Vector3();
    var _normalMatrix = new Matrix3();
    function Plane( normal, constant ) {
        // normal is assumed to be normalized
        this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
        this.constant = ( constant !== undefined ) ? constant : 0;
    }
    Object.assign( Plane.prototype, {
        isPlane: true,
        set: function ( normal, constant ) {
            this.normal.copy( normal );
            this.constant = constant;
            return this;
        },
        setComponents: function ( x, y, z, w ) {
            this.normal.set( x, y, z );
            this.constant = w;
            return this;
        },
        setFromNormalAndCoplanarPoint: function ( normal, point ) {
            this.normal.copy( normal );
            this.constant = - point.dot( this.normal );
            return this;
        },
        setFromCoplanarPoints: function ( a, b, c ) {
            var normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();
            // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
            this.setFromNormalAndCoplanarPoint( normal, a );
            return this;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( plane ) {
            this.normal.copy( plane.normal );
            this.constant = plane.constant;
            return this;
        },
        normalize: function () {
            // Note: will lead to a divide by zero if the plane is invalid.
            var inverseNormalLength = 1.0 / this.normal.length();
            this.normal.multiplyScalar( inverseNormalLength );
            this.constant *= inverseNormalLength;
            return this;
        },
        negate: function () {
            this.constant *= - 1;
            this.normal.negate();
            return this;
        },
        distanceToPoint: function ( point ) {
            return this.normal.dot( point ) + this.constant;
        },
        distanceToSphere: function ( sphere ) {
            return this.distanceToPoint( sphere.center ) - sphere.radius;
        },
        projectPoint: function ( point, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Plane: .projectPoint() target is now required' );
                target = new Vector3();
            }
            return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );
        },
        intersectLine: function ( line, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Plane: .intersectLine() target is now required' );
                target = new Vector3();
            }
            var direction = line.delta( _vector1 );
            var denominator = this.normal.dot( direction );
            if ( denominator === 0 ) {
                // line is coplanar, return origin
                if ( this.distanceToPoint( line.start ) === 0 ) {
                    return target.copy( line.start );
                }
                // Unsure if this is the correct method to handle this case.
                return undefined;
            }
            var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
            if ( t < 0 || t > 1 ) {
                return undefined;
            }
            return target.copy( direction ).multiplyScalar( t ).add( line.start );
        },
        intersectsLine: function ( line ) {
            // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
            var startSign = this.distanceToPoint( line.start );
            var endSign = this.distanceToPoint( line.end );
            return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
        },
        intersectsBox: function ( box ) {
            return box.intersectsPlane( this );
        },
        intersectsSphere: function ( sphere ) {
            return sphere.intersectsPlane( this );
        },
        coplanarPoint: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Plane: .coplanarPoint() target is now required' );
                target = new Vector3();
            }
            return target.copy( this.normal ).multiplyScalar( - this.constant );
        },
        applyMatrix4: function ( matrix, optionalNormalMatrix ) {
            var normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );
            var referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );
            var normal = this.normal.applyMatrix3( normalMatrix ).normalize();
            this.constant = - referencePoint.dot( normal );
            return this;
        },
        translate: function ( offset ) {
            this.constant -= offset.dot( this.normal );
            return this;
        },
        equals: function ( plane ) {
            return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
        }
    } );
    /**
     * @author bhouston / http://clara.io
     * @author mrdoob / http://mrdoob.com/
     */
    var _v0$1 = new Vector3();
    var _v1$3 = new Vector3();
    var _v2$1 = new Vector3();
    var _v3 = new Vector3();
    var _vab = new Vector3();
    var _vac = new Vector3();
    var _vbc = new Vector3();
    var _vap = new Vector3();
    var _vbp = new Vector3();
    var _vcp = new Vector3();
    function Triangle( a, b, c ) {
        this.a = ( a !== undefined ) ? a : new Vector3();
        this.b = ( b !== undefined ) ? b : new Vector3();
        this.c = ( c !== undefined ) ? c : new Vector3();
    }
    Object.assign( Triangle, {
        getNormal: function ( a, b, c, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Triangle: .getNormal() target is now required' );
                target = new Vector3();
            }
            target.subVectors( c, b );
            _v0$1.subVectors( a, b );
            target.cross( _v0$1 );
            var targetLengthSq = target.lengthSq();
            if ( targetLengthSq > 0 ) {
                return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
            }
            return target.set( 0, 0, 0 );
        },
        // static/instance method to calculate barycentric coordinates
        // based on: http://www.blackpawn.com/texts/pointinpoly/default.html
        getBarycoord: function ( point, a, b, c, target ) {
            _v0$1.subVectors( c, a );
            _v1$3.subVectors( b, a );
            _v2$1.subVectors( point, a );
            var dot00 = _v0$1.dot( _v0$1 );
            var dot01 = _v0$1.dot( _v1$3 );
            var dot02 = _v0$1.dot( _v2$1 );
            var dot11 = _v1$3.dot( _v1$3 );
            var dot12 = _v1$3.dot( _v2$1 );
            var denom = ( dot00 * dot11 - dot01 * dot01 );
            if ( target === undefined ) {
                console.warn( 'THREE.Triangle: .getBarycoord() target is now required' );
                target = new Vector3();
            }
            // collinear or singular triangle
            if ( denom === 0 ) {
                // arbitrary location outside of triangle?
                // not sure if this is the best idea, maybe should be returning undefined
                return target.set( - 2, - 1, - 1 );
            }
            var invDenom = 1 / denom;
            var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
            var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
            // barycentric coordinates must always sum to 1
            return target.set( 1 - u - v, v, u );
        },
        containsPoint: function ( point, a, b, c ) {
            Triangle.getBarycoord( point, a, b, c, _v3 );
            return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 );
        },
        getUV: function ( point, p1, p2, p3, uv1, uv2, uv3, target ) {
            this.getBarycoord( point, p1, p2, p3, _v3 );
            target.set( 0, 0 );
            target.addScaledVector( uv1, _v3.x );
            target.addScaledVector( uv2, _v3.y );
            target.addScaledVector( uv3, _v3.z );
            return target;
        },
        isFrontFacing: function ( a, b, c, direction ) {
            _v0$1.subVectors( c, b );
            _v1$3.subVectors( a, b );
            // strictly front facing
            return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;
        }
    } );
    Object.assign( Triangle.prototype, {
        set: function ( a, b, c ) {
            this.a.copy( a );
            this.b.copy( b );
            this.c.copy( c );
            return this;
        },
        setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
            this.a.copy( points[ i0 ] );
            this.b.copy( points[ i1 ] );
            this.c.copy( points[ i2 ] );
            return this;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( triangle ) {
            this.a.copy( triangle.a );
            this.b.copy( triangle.b );
            this.c.copy( triangle.c );
            return this;
        },
        getArea: function () {
            _v0$1.subVectors( this.c, this.b );
            _v1$3.subVectors( this.a, this.b );
            return _v0$1.cross( _v1$3 ).length() * 0.5;
        },
        getMidpoint: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Triangle: .getMidpoint() target is now required' );
                target = new Vector3();
            }
            return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
        },
        getNormal: function ( target ) {
            return Triangle.getNormal( this.a, this.b, this.c, target );
        },
        getPlane: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Triangle: .getPlane() target is now required' );
                target = new Plane();
            }
            return target.setFromCoplanarPoints( this.a, this.b, this.c );
        },
        getBarycoord: function ( point, target ) {
            return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
        },
        getUV: function ( point, uv1, uv2, uv3, target ) {
            return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );
        },
        containsPoint: function ( point ) {
            return Triangle.containsPoint( point, this.a, this.b, this.c );
        },
        isFrontFacing: function ( direction ) {
            return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
        },
        intersectsBox: function ( box ) {
            return box.intersectsTriangle( this );
        },
        closestPointToPoint: function ( p, target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' );
                target = new Vector3();
            }
            var a = this.a, b = this.b, c = this.c;
            var v, w;
            // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
            // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
            // under the accompanying license; see chapter 5.1.5 for detailed explanation.
            // basically, we're distinguishing which of the voronoi regions of the triangle
            // the point lies in with the minimum amount of redundant computation.
            _vab.subVectors( b, a );
            _vac.subVectors( c, a );
            _vap.subVectors( p, a );
            var d1 = _vab.dot( _vap );
            var d2 = _vac.dot( _vap );
            if ( d1 <= 0 && d2 <= 0 ) {
                // vertex region of A; barycentric coords (1, 0, 0)
                return target.copy( a );
            }
            _vbp.subVectors( p, b );
            var d3 = _vab.dot( _vbp );
            var d4 = _vac.dot( _vbp );
            if ( d3 >= 0 && d4 <= d3 ) {
                // vertex region of B; barycentric coords (0, 1, 0)
                return target.copy( b );
            }
            var vc = d1 * d4 - d3 * d2;
            if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
                v = d1 / ( d1 - d3 );
                // edge region of AB; barycentric coords (1-v, v, 0)
                return target.copy( a ).addScaledVector( _vab, v );
            }
            _vcp.subVectors( p, c );
            var d5 = _vab.dot( _vcp );
            var d6 = _vac.dot( _vcp );
            if ( d6 >= 0 && d5 <= d6 ) {
                // vertex region of C; barycentric coords (0, 0, 1)
                return target.copy( c );
            }
            var vb = d5 * d2 - d1 * d6;
            if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
                w = d2 / ( d2 - d6 );
                // edge region of AC; barycentric coords (1-w, 0, w)
                return target.copy( a ).addScaledVector( _vac, w );
            }
            var va = d3 * d6 - d5 * d4;
            if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
                _vbc.subVectors( c, b );
                w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
                // edge region of BC; barycentric coords (0, 1-w, w)
                return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
            }
            // face region
            var denom = 1 / ( va + vb + vc );
            // u = va * denom
            v = vb * denom;
            w = vc * denom;
            return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
        },
        equals: function ( triangle ) {
            return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
        'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
        'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
        'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
        'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
        'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
        'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
        'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
        'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
        'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
        'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
        'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
        'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
        'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
        'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
        'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
        'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
        'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
        'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
        'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
        'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
        'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
        'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
        'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
    var _hslA = { h: 0, s: 0, l: 0 };
    var _hslB = { h: 0, s: 0, l: 0 };
    function Color( r, g, b ) {
        if ( g === undefined && b === undefined ) {
            // r is THREE.Color, hex or string
            return this.set( r );
        }
        return this.setRGB( r, g, b );
    }
    function hue2rgb( p, q, t ) {
        if ( t < 0 ) { t += 1; }
        if ( t > 1 ) { t -= 1; }
        if ( t < 1 / 6 ) { return p + ( q - p ) * 6 * t; }
        if ( t < 1 / 2 ) { return q; }
        if ( t < 2 / 3 ) { return p + ( q - p ) * 6 * ( 2 / 3 - t ); }
        return p;
    }
    function SRGBToLinear( c ) {
        return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
    }
    function LinearToSRGB( c ) {
        return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;
    }
    Object.assign( Color.prototype, {
        isColor: true,
        r: 1, g: 1, b: 1,
        set: function ( value ) {
            if ( value && value.isColor ) {
                this.copy( value );
            } else if ( typeof value === 'number' ) {
                this.setHex( value );
            } else if ( typeof value === 'string' ) {
                this.setStyle( value );
            }
            return this;
        },
        setScalar: function ( scalar ) {
            this.r = scalar;
            this.g = scalar;
            this.b = scalar;
            return this;
        },
        setHex: function ( hex ) {
            hex = Math.floor( hex );
            this.r = ( hex >> 16 & 255 ) / 255;
            this.g = ( hex >> 8 & 255 ) / 255;
            this.b = ( hex & 255 ) / 255;
            return this;
        },
        setRGB: function ( r, g, b ) {
            this.r = r;
            this.g = g;
            this.b = b;
            return this;
        },
        setHSL: function ( h, s, l ) {
            // h,s,l ranges are in 0.0 - 1.0
            h = MathUtils.euclideanModulo( h, 1 );
            s = MathUtils.clamp( s, 0, 1 );
            l = MathUtils.clamp( l, 0, 1 );
            if ( s === 0 ) {
                this.r = this.g = this.b = l;
            } else {
                var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
                var q = ( 2 * l ) - p;
                this.r = hue2rgb( q, p, h + 1 / 3 );
                this.g = hue2rgb( q, p, h );
                this.b = hue2rgb( q, p, h - 1 / 3 );
            }
            return this;
        },
        setStyle: function ( style ) {
            function handleAlpha( string ) {
                if ( string === undefined ) { return; }
                if ( parseFloat( string ) < 1 ) {
                    console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
                }
            }
            var m;
            if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
                // rgb / hsl
                var color;
                var name = m[ 1 ];
                var components = m[ 2 ];
                switch ( name ) {
                    case 'rgb':
                    case 'rgba':
                        if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
                            // rgb(255,0,0) rgba(255,0,0,0.5)
                            this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
                            this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
                            this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
                            handleAlpha( color[ 5 ] );
                            return this;
                        }
                        if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
                            // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
                            this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
                            this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
                            this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
                            handleAlpha( color[ 5 ] );
                            return this;
                        }
                        break;
                    case 'hsl':
                    case 'hsla':
                        if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
                            // hsl(120,50%,50%) hsla(120,50%,50%,0.5)
                            var h = parseFloat( color[ 1 ] ) / 360;
                            var s = parseInt( color[ 2 ], 10 ) / 100;
                            var l = parseInt( color[ 3 ], 10 ) / 100;
                            handleAlpha( color[ 5 ] );
                            return this.setHSL( h, s, l );
                        }
                        break;
                }
            } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
                // hex color
                var hex = m[ 1 ];
                var size = hex.length;
                if ( size === 3 ) {
                    // #ff0
                    this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
                    this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
                    this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
                    return this;
                } else if ( size === 6 ) {
                    // #ff0000
                    this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
                    this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
                    this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
                    return this;
                }
            }
            if ( style && style.length > 0 ) {
                return this.setColorName( style );
            }
            return this;
        },
        setColorName: function ( style ) {
            // color keywords
            var hex = _colorKeywords[ style ];
            if ( hex !== undefined ) {
                // red
                this.setHex( hex );
            } else {
                // unknown color
                console.warn( 'THREE.Color: Unknown color ' + style );
            }
            return this;
        },
        clone: function () {
            return new this.constructor( this.r, this.g, this.b );
        },
        copy: function ( color ) {
            this.r = color.r;
            this.g = color.g;
            this.b = color.b;
            return this;
        },
        copyGammaToLinear: function ( color, gammaFactor ) {
            if ( gammaFactor === undefined ) { gammaFactor = 2.0; }
            this.r = Math.pow( color.r, gammaFactor );
            this.g = Math.pow( color.g, gammaFactor );
            this.b = Math.pow( color.b, gammaFactor );
            return this;
        },
        copyLinearToGamma: function ( color, gammaFactor ) {
            if ( gammaFactor === undefined ) { gammaFactor = 2.0; }
            var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
            this.r = Math.pow( color.r, safeInverse );
            this.g = Math.pow( color.g, safeInverse );
            this.b = Math.pow( color.b, safeInverse );
            return this;
        },
        convertGammaToLinear: function ( gammaFactor ) {
            this.copyGammaToLinear( this, gammaFactor );
            return this;
        },
        convertLinearToGamma: function ( gammaFactor ) {
            this.copyLinearToGamma( this, gammaFactor );
            return this;
        },
        copySRGBToLinear: function ( color ) {
            this.r = SRGBToLinear( color.r );
            this.g = SRGBToLinear( color.g );
            this.b = SRGBToLinear( color.b );
            return this;
        },
        copyLinearToSRGB: function ( color ) {
            this.r = LinearToSRGB( color.r );
            this.g = LinearToSRGB( color.g );
            this.b = LinearToSRGB( color.b );
            return this;
        },
        convertSRGBToLinear: function () {
            this.copySRGBToLinear( this );
            return this;
        },
        convertLinearToSRGB: function () {
            this.copyLinearToSRGB( this );
            return this;
        },
        getHex: function () {
            return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
        },
        getHexString: function () {
            return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
        },
        getHSL: function ( target ) {
            // h,s,l ranges are in 0.0 - 1.0
            if ( target === undefined ) {
                console.warn( 'THREE.Color: .getHSL() target is now required' );
                target = { h: 0, s: 0, l: 0 };
            }
            var r = this.r, g = this.g, b = this.b;
            var max = Math.max( r, g, b );
            var min = Math.min( r, g, b );
            var hue, saturation;
            var lightness = ( min + max ) / 2.0;
            if ( min === max ) {
                hue = 0;
                saturation = 0;
            } else {
                var delta = max - min;
                saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
                switch ( max ) {
                    case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
                    case g: hue = ( b - r ) / delta + 2; break;
                    case b: hue = ( r - g ) / delta + 4; break;
                }
                hue /= 6;
            }
            target.h = hue;
            target.s = saturation;
            target.l = lightness;
            return target;
        },
        getStyle: function () {
            return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
        },
        offsetHSL: function ( h, s, l ) {
            this.getHSL( _hslA );
            _hslA.h += h; _hslA.s += s; _hslA.l += l;
            this.setHSL( _hslA.h, _hslA.s, _hslA.l );
            return this;
        },
        add: function ( color ) {
            this.r += color.r;
            this.g += color.g;
            this.b += color.b;
            return this;
        },
        addColors: function ( color1, color2 ) {
            this.r = color1.r + color2.r;
            this.g = color1.g + color2.g;
            this.b = color1.b + color2.b;
            return this;
        },
        addScalar: function ( s ) {
            this.r += s;
            this.g += s;
            this.b += s;
            return this;
        },
        sub: function ( color ) {
            this.r = Math.max( 0, this.r - color.r );
            this.g = Math.max( 0, this.g - color.g );
            this.b = Math.max( 0, this.b - color.b );
            return this;
        },
        multiply: function ( color ) {
            this.r *= color.r;
            this.g *= color.g;
            this.b *= color.b;
            return this;
        },
        multiplyScalar: function ( s ) {
            this.r *= s;
            this.g *= s;
            this.b *= s;
            return this;
        },
        lerp: function ( color, alpha ) {
            this.r += ( color.r - this.r ) * alpha;
            this.g += ( color.g - this.g ) * alpha;
            this.b += ( color.b - this.b ) * alpha;
            return this;
        },
        lerpHSL: function ( color, alpha ) {
            this.getHSL( _hslA );
            color.getHSL( _hslB );
            var h = MathUtils.lerp( _hslA.h, _hslB.h, alpha );
            var s = MathUtils.lerp( _hslA.s, _hslB.s, alpha );
            var l = MathUtils.lerp( _hslA.l, _hslB.l, alpha );
            this.setHSL( h, s, l );
            return this;
        },
        equals: function ( c ) {
            return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
        },
        fromArray: function ( array, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this.r = array[ offset ];
            this.g = array[ offset + 1 ];
            this.b = array[ offset + 2 ];
            return this;
        },
        toArray: function ( array, offset ) {
            if ( array === undefined ) { array = []; }
            if ( offset === undefined ) { offset = 0; }
            array[ offset ] = this.r;
            array[ offset + 1 ] = this.g;
            array[ offset + 2 ] = this.b;
            return array;
        },
        toJSON: function () {
            return this.getHex();
        }
    } );
    Color.NAMES = _colorKeywords;
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     */
    function Face3( a, b, c, normal, color, materialIndex ) {
        this.a = a;
        this.b = b;
        this.c = c;
        this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
        this.vertexNormals = Array.isArray( normal ) ? normal : [];
        this.color = ( color && color.isColor ) ? color : new Color();
        this.vertexColors = Array.isArray( color ) ? color : [];
        this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
    }
    Object.assign( Face3.prototype, {
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( source ) {
            this.a = source.a;
            this.b = source.b;
            this.c = source.c;
            this.normal.copy( source.normal );
            this.color.copy( source.color );
            this.materialIndex = source.materialIndex;
            for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
                this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
            }
            for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {
                this.vertexColors[ i ] = source.vertexColors[ i ].clone();
            }
            return this;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     */
    var materialId = 0;
    function Material() {
        Object.defineProperty( this, 'id', { value: materialId ++ } );
        this.uuid = MathUtils.generateUUID();
        this.name = '';
        this.type = 'Material';
        this.fog = true;
        this.blending = NormalBlending;
        this.side = FrontSide;
        this.flatShading = false;
        this.vertexColors = false;
        this.opacity = 1;
        this.transparent = false;
        this.blendSrc = SrcAlphaFactor;
        this.blendDst = OneMinusSrcAlphaFactor;
        this.blendEquation = AddEquation;
        this.blendSrcAlpha = null;
        this.blendDstAlpha = null;
        this.blendEquationAlpha = null;
        this.depthFunc = LessEqualDepth;
        this.depthTest = true;
        this.depthWrite = true;
        this.stencilWriteMask = 0xff;
        this.stencilFunc = AlwaysStencilFunc;
        this.stencilRef = 0;
        this.stencilFuncMask = 0xff;
        this.stencilFail = KeepStencilOp;
        this.stencilZFail = KeepStencilOp;
        this.stencilZPass = KeepStencilOp;
        this.stencilWrite = false;
        this.clippingPlanes = null;
        this.clipIntersection = false;
        this.clipShadows = false;
        this.shadowSide = null;
        this.colorWrite = true;
        this.precision = null; // override the renderer's default precision for this material
        this.polygonOffset = false;
        this.polygonOffsetFactor = 0;
        this.polygonOffsetUnits = 0;
        this.dithering = false;
        this.alphaTest = 0;
        this.premultipliedAlpha = false;
        this.visible = true;
        this.toneMapped = true;
        this.userData = {};
        this.version = 0;
    }
    Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
        constructor: Material,
        isMaterial: true,
        onBeforeCompile: function () {},
        setValues: function ( values ) {
            if ( values === undefined ) { return; }
            for ( var key in values ) {
                var newValue = values[ key ];
                if ( newValue === undefined ) {
                    console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
                    continue;
                }
                // for backward compatability if shading is set in the constructor
                if ( key === 'shading' ) {
                    console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
                    this.flatShading = ( newValue === FlatShading ) ? true : false;
                    continue;
                }
                var currentValue = this[ key ];
                if ( currentValue === undefined ) {
                    console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
                    continue;
                }
                if ( currentValue && currentValue.isColor ) {
                    currentValue.set( newValue );
                } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
                    currentValue.copy( newValue );
                } else {
                    this[ key ] = newValue;
                }
            }
        },
        toJSON: function ( meta ) {
            var isRoot = ( meta === undefined || typeof meta === 'string' );
            if ( isRoot ) {
                meta = {
                    textures: {},
                    images: {}
                };
            }
            var data = {
                metadata: {
                    version: 4.5,
                    type: 'Material',
                    generator: 'Material.toJSON'
                }
            };
            // standard Material serialization
            data.uuid = this.uuid;
            data.type = this.type;
            if ( this.name !== '' ) { data.name = this.name; }
            if ( this.color && this.color.isColor ) { data.color = this.color.getHex(); }
            if ( this.roughness !== undefined ) { data.roughness = this.roughness; }
            if ( this.metalness !== undefined ) { data.metalness = this.metalness; }
            if ( this.sheen && this.sheen.isColor ) { data.sheen = this.sheen.getHex(); }
            if ( this.emissive && this.emissive.isColor ) { data.emissive = this.emissive.getHex(); }
            if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) { data.emissiveIntensity = this.emissiveIntensity; }
            if ( this.specular && this.specular.isColor ) { data.specular = this.specular.getHex(); }
            if ( this.shininess !== undefined ) { data.shininess = this.shininess; }
            if ( this.clearcoat !== undefined ) { data.clearcoat = this.clearcoat; }
            if ( this.clearcoatRoughness !== undefined ) { data.clearcoatRoughness = this.clearcoatRoughness; }
            if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {
                data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;
            }
            if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {
                data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;
            }
            if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {
                data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
                data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
            }
            if ( this.map && this.map.isTexture ) { data.map = this.map.toJSON( meta ).uuid; }
            if ( this.matcap && this.matcap.isTexture ) { data.matcap = this.matcap.toJSON( meta ).uuid; }
            if ( this.alphaMap && this.alphaMap.isTexture ) { data.alphaMap = this.alphaMap.toJSON( meta ).uuid; }
            if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; }
            if ( this.aoMap && this.aoMap.isTexture ) {
                data.aoMap = this.aoMap.toJSON( meta ).uuid;
                data.aoMapIntensity = this.aoMapIntensity;
            }
            if ( this.bumpMap && this.bumpMap.isTexture ) {
                data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
                data.bumpScale = this.bumpScale;
            }
            if ( this.normalMap && this.normalMap.isTexture ) {
                data.normalMap = this.normalMap.toJSON( meta ).uuid;
                data.normalMapType = this.normalMapType;
                data.normalScale = this.normalScale.toArray();
            }
            if ( this.displacementMap && this.displacementMap.isTexture ) {
                data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
                data.displacementScale = this.displacementScale;
                data.displacementBias = this.displacementBias;
            }
            if ( this.roughnessMap && this.roughnessMap.isTexture ) { data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; }
            if ( this.metalnessMap && this.metalnessMap.isTexture ) { data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; }
            if ( this.emissiveMap && this.emissiveMap.isTexture ) { data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; }
            if ( this.specularMap && this.specularMap.isTexture ) { data.specularMap = this.specularMap.toJSON( meta ).uuid; }
            if ( this.envMap && this.envMap.isTexture ) {
                data.envMap = this.envMap.toJSON( meta ).uuid;
                data.reflectivity = this.reflectivity; // Scale behind envMap
                data.refractionRatio = this.refractionRatio;
                if ( this.combine !== undefined ) { data.combine = this.combine; }
                if ( this.envMapIntensity !== undefined ) { data.envMapIntensity = this.envMapIntensity; }
            }
            if ( this.gradientMap && this.gradientMap.isTexture ) {
                data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
            }
            if ( this.size !== undefined ) { data.size = this.size; }
            if ( this.sizeAttenuation !== undefined ) { data.sizeAttenuation = this.sizeAttenuation; }
            if ( this.blending !== NormalBlending ) { data.blending = this.blending; }
            if ( this.flatShading === true ) { data.flatShading = this.flatShading; }
            if ( this.side !== FrontSide ) { data.side = this.side; }
            if ( this.vertexColors ) { data.vertexColors = true; }
            if ( this.opacity < 1 ) { data.opacity = this.opacity; }
            if ( this.transparent === true ) { data.transparent = this.transparent; }
            data.depthFunc = this.depthFunc;
            data.depthTest = this.depthTest;
            data.depthWrite = this.depthWrite;
            data.stencilWrite = this.stencilWrite;
            data.stencilWriteMask = this.stencilWriteMask;
            data.stencilFunc = this.stencilFunc;
            data.stencilRef = this.stencilRef;
            data.stencilFuncMask = this.stencilFuncMask;
            data.stencilFail = this.stencilFail;
            data.stencilZFail = this.stencilZFail;
            data.stencilZPass = this.stencilZPass;
            // rotation (SpriteMaterial)
            if ( this.rotation && this.rotation !== 0 ) { data.rotation = this.rotation; }
            if ( this.polygonOffset === true ) { data.polygonOffset = true; }
            if ( this.polygonOffsetFactor !== 0 ) { data.polygonOffsetFactor = this.polygonOffsetFactor; }
            if ( this.polygonOffsetUnits !== 0 ) { data.polygonOffsetUnits = this.polygonOffsetUnits; }
            if ( this.linewidth && this.linewidth !== 1 ) { data.linewidth = this.linewidth; }
            if ( this.dashSize !== undefined ) { data.dashSize = this.dashSize; }
            if ( this.gapSize !== undefined ) { data.gapSize = this.gapSize; }
            if ( this.scale !== undefined ) { data.scale = this.scale; }
            if ( this.dithering === true ) { data.dithering = true; }
            if ( this.alphaTest > 0 ) { data.alphaTest = this.alphaTest; }
            if ( this.premultipliedAlpha === true ) { data.premultipliedAlpha = this.premultipliedAlpha; }
            if ( this.wireframe === true ) { data.wireframe = this.wireframe; }
            if ( this.wireframeLinewidth > 1 ) { data.wireframeLinewidth = this.wireframeLinewidth; }
            if ( this.wireframeLinecap !== 'round' ) { data.wireframeLinecap = this.wireframeLinecap; }
            if ( this.wireframeLinejoin !== 'round' ) { data.wireframeLinejoin = this.wireframeLinejoin; }
            if ( this.morphTargets === true ) { data.morphTargets = true; }
            if ( this.morphNormals === true ) { data.morphNormals = true; }
            if ( this.skinning === true ) { data.skinning = true; }
            if ( this.visible === false ) { data.visible = false; }
            if ( this.toneMapped === false ) { data.toneMapped = false; }
            if ( JSON.stringify( this.userData ) !== '{}' ) { data.userData = this.userData; }
            // TODO: Copied from Object3D.toJSON
            function extractFromCache( cache ) {
                var values = [];
                for ( var key in cache ) {
                    var data = cache[ key ];
                    delete data.metadata;
                    values.push( data );
                }
                return values;
            }
            if ( isRoot ) {
                var textures = extractFromCache( meta.textures );
                var images = extractFromCache( meta.images );
                if ( textures.length > 0 ) { data.textures = textures; }
                if ( images.length > 0 ) { data.images = images; }
            }
            return data;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( source ) {
            this.name = source.name;
            this.fog = source.fog;
            this.blending = source.blending;
            this.side = source.side;
            this.flatShading = source.flatShading;
            this.vertexColors = source.vertexColors;
            this.opacity = source.opacity;
            this.transparent = source.transparent;
            this.blendSrc = source.blendSrc;
            this.blendDst = source.blendDst;
            this.blendEquation = source.blendEquation;
            this.blendSrcAlpha = source.blendSrcAlpha;
            this.blendDstAlpha = source.blendDstAlpha;
            this.blendEquationAlpha = source.blendEquationAlpha;
            this.depthFunc = source.depthFunc;
            this.depthTest = source.depthTest;
            this.depthWrite = source.depthWrite;
            this.stencilWriteMask = source.stencilWriteMask;
            this.stencilFunc = source.stencilFunc;
            this.stencilRef = source.stencilRef;
            this.stencilFuncMask = source.stencilFuncMask;
            this.stencilFail = source.stencilFail;
            this.stencilZFail = source.stencilZFail;
            this.stencilZPass = source.stencilZPass;
            this.stencilWrite = source.stencilWrite;
            var srcPlanes = source.clippingPlanes,
                dstPlanes = null;
            if ( srcPlanes !== null ) {
                var n = srcPlanes.length;
                dstPlanes = new Array( n );
                for ( var i = 0; i !== n; ++ i )
                    { dstPlanes[ i ] = srcPlanes[ i ].clone(); }
            }
            this.clippingPlanes = dstPlanes;
            this.clipIntersection = source.clipIntersection;
            this.clipShadows = source.clipShadows;
            this.shadowSide = source.shadowSide;
            this.colorWrite = source.colorWrite;
            this.precision = source.precision;
            this.polygonOffset = source.polygonOffset;
            this.polygonOffsetFactor = source.polygonOffsetFactor;
            this.polygonOffsetUnits = source.polygonOffsetUnits;
            this.dithering = source.dithering;
            this.alphaTest = source.alphaTest;
            this.premultipliedAlpha = source.premultipliedAlpha;
            this.visible = source.visible;
            this.toneMapped = source.toneMapped;
            this.userData = JSON.parse( JSON.stringify( source.userData ) );
            return this;
        },
        dispose: function () {
            this.dispatchEvent( { type: 'dispose' } );
        }
    } );
    Object.defineProperty( Material.prototype, 'needsUpdate', {
        set: function ( value ) {
            if ( value === true ) { this.version ++; }
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * opacity: ,
     * map: new THREE.Texture( ),
     *
     * lightMap: new THREE.Texture( ),
     * lightMapIntensity:
     *
     * aoMap: new THREE.Texture( ),
     * aoMapIntensity:
     *
     * specularMap: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
     * combine: THREE.Multiply,
     * reflectivity: ,
     * refractionRatio: ,
     *
     * depthTest: ,
     * depthWrite: ,
     *
     * wireframe: ,
     * wireframeLinewidth: ,
     *
     * skinning: ,
     * morphTargets:
     * }
     */
    function MeshBasicMaterial( parameters ) {
        Material.call( this );
        this.type = 'MeshBasicMaterial';
        this.color = new Color( 0xffffff ); // emissive
        this.map = null;
        this.lightMap = null;
        this.lightMapIntensity = 1.0;
        this.aoMap = null;
        this.aoMapIntensity = 1.0;
        this.specularMap = null;
        this.alphaMap = null;
        this.envMap = null;
        this.combine = MultiplyOperation;
        this.reflectivity = 1;
        this.refractionRatio = 0.98;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.wireframeLinecap = 'round';
        this.wireframeLinejoin = 'round';
        this.skinning = false;
        this.morphTargets = false;
        this.setValues( parameters );
    }
    MeshBasicMaterial.prototype = Object.create( Material.prototype );
    MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;
    MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
    MeshBasicMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.map = source.map;
        this.lightMap = source.lightMap;
        this.lightMapIntensity = source.lightMapIntensity;
        this.aoMap = source.aoMap;
        this.aoMapIntensity = source.aoMapIntensity;
        this.specularMap = source.specularMap;
        this.alphaMap = source.alphaMap;
        this.envMap = source.envMap;
        this.combine = source.combine;
        this.reflectivity = source.reflectivity;
        this.refractionRatio = source.refractionRatio;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.wireframeLinecap = source.wireframeLinecap;
        this.wireframeLinejoin = source.wireframeLinejoin;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        return this;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var _vector$3 = new Vector3();
    function BufferAttribute( array, itemSize, normalized ) {
        if ( Array.isArray( array ) ) {
            throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
        }
        this.name = '';
        this.array = array;
        this.itemSize = itemSize;
        this.count = array !== undefined ? array.length / itemSize : 0;
        this.normalized = normalized === true;
        this.usage = StaticDrawUsage;
        this.updateRange = { offset: 0, count: - 1 };
        this.version = 0;
    }
    Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {
        set: function ( value ) {
            if ( value === true ) { this.version ++; }
        }
    } );
    Object.assign( BufferAttribute.prototype, {
        isBufferAttribute: true,
        onUploadCallback: function () {},
        setUsage: function ( value ) {
            this.usage = value;
            return this;
        },
        copy: function ( source ) {
            this.name = source.name;
            this.array = new source.array.constructor( source.array );
            this.itemSize = source.itemSize;
            this.count = source.count;
            this.normalized = source.normalized;
            this.usage = source.usage;
            return this;
        },
        copyAt: function ( index1, attribute, index2 ) {
            index1 *= this.itemSize;
            index2 *= attribute.itemSize;
            for ( var i = 0, l = this.itemSize; i < l; i ++ ) {
                this.array[ index1 + i ] = attribute.array[ index2 + i ];
            }
            return this;
        },
        copyArray: function ( array ) {
            this.array.set( array );
            return this;
        },
        copyColorsArray: function ( colors ) {
            var array = this.array, offset = 0;
            for ( var i = 0, l = colors.length; i < l; i ++ ) {
                var color = colors[ i ];
                if ( color === undefined ) {
                    console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
                    color = new Color();
                }
                array[ offset ++ ] = color.r;
                array[ offset ++ ] = color.g;
                array[ offset ++ ] = color.b;
            }
            return this;
        },
        copyVector2sArray: function ( vectors ) {
            var array = this.array, offset = 0;
            for ( var i = 0, l = vectors.length; i < l; i ++ ) {
                var vector = vectors[ i ];
                if ( vector === undefined ) {
                    console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
                    vector = new Vector2();
                }
                array[ offset ++ ] = vector.x;
                array[ offset ++ ] = vector.y;
            }
            return this;
        },
        copyVector3sArray: function ( vectors ) {
            var array = this.array, offset = 0;
            for ( var i = 0, l = vectors.length; i < l; i ++ ) {
                var vector = vectors[ i ];
                if ( vector === undefined ) {
                    console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
                    vector = new Vector3();
                }
                array[ offset ++ ] = vector.x;
                array[ offset ++ ] = vector.y;
                array[ offset ++ ] = vector.z;
            }
            return this;
        },
        copyVector4sArray: function ( vectors ) {
            var array = this.array, offset = 0;
            for ( var i = 0, l = vectors.length; i < l; i ++ ) {
                var vector = vectors[ i ];
                if ( vector === undefined ) {
                    console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
                    vector = new Vector4();
                }
                array[ offset ++ ] = vector.x;
                array[ offset ++ ] = vector.y;
                array[ offset ++ ] = vector.z;
                array[ offset ++ ] = vector.w;
            }
            return this;
        },
        applyMatrix3: function ( m ) {
            for ( var i = 0, l = this.count; i < l; i ++ ) {
                _vector$3.x = this.getX( i );
                _vector$3.y = this.getY( i );
                _vector$3.z = this.getZ( i );
                _vector$3.applyMatrix3( m );
                this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
            }
            return this;
        },
        applyMatrix4: function ( m ) {
            for ( var i = 0, l = this.count; i < l; i ++ ) {
                _vector$3.x = this.getX( i );
                _vector$3.y = this.getY( i );
                _vector$3.z = this.getZ( i );
                _vector$3.applyMatrix4( m );
                this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
            }
            return this;
        },
        applyNormalMatrix: function ( m ) {
            for ( var i = 0, l = this.count; i < l; i ++ ) {
                _vector$3.x = this.getX( i );
                _vector$3.y = this.getY( i );
                _vector$3.z = this.getZ( i );
                _vector$3.applyNormalMatrix( m );
                this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
            }
            return this;
        },
        transformDirection: function ( m ) {
            for ( var i = 0, l = this.count; i < l; i ++ ) {
                _vector$3.x = this.getX( i );
                _vector$3.y = this.getY( i );
                _vector$3.z = this.getZ( i );
                _vector$3.transformDirection( m );
                this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );
            }
            return this;
        },
        set: function ( value, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this.array.set( value, offset );
            return this;
        },
        getX: function ( index ) {
            return this.array[ index * this.itemSize ];
        },
        setX: function ( index, x ) {
            this.array[ index * this.itemSize ] = x;
            return this;
        },
        getY: function ( index ) {
            return this.array[ index * this.itemSize + 1 ];
        },
        setY: function ( index, y ) {
            this.array[ index * this.itemSize + 1 ] = y;
            return this;
        },
        getZ: function ( index ) {
            return this.array[ index * this.itemSize + 2 ];
        },
        setZ: function ( index, z ) {
            this.array[ index * this.itemSize + 2 ] = z;
            return this;
        },
        getW: function ( index ) {
            return this.array[ index * this.itemSize + 3 ];
        },
        setW: function ( index, w ) {
            this.array[ index * this.itemSize + 3 ] = w;
            return this;
        },
        setXY: function ( index, x, y ) {
            index *= this.itemSize;
            this.array[ index + 0 ] = x;
            this.array[ index + 1 ] = y;
            return this;
        },
        setXYZ: function ( index, x, y, z ) {
            index *= this.itemSize;
            this.array[ index + 0 ] = x;
            this.array[ index + 1 ] = y;
            this.array[ index + 2 ] = z;
            return this;
        },
        setXYZW: function ( index, x, y, z, w ) {
            index *= this.itemSize;
            this.array[ index + 0 ] = x;
            this.array[ index + 1 ] = y;
            this.array[ index + 2 ] = z;
            this.array[ index + 3 ] = w;
            return this;
        },
        onUpload: function ( callback ) {
            this.onUploadCallback = callback;
            return this;
        },
        clone: function () {
            return new this.constructor( this.array, this.itemSize ).copy( this );
        },
        toJSON: function () {
            return {
                itemSize: this.itemSize,
                type: this.array.constructor.name,
                array: Array.prototype.slice.call( this.array ),
                normalized: this.normalized
            };
        }
    } );
    //
    function Int8BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized );
    }
    Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;
    function Uint8BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized );
    }
    Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;
    function Uint8ClampedBufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized );
    }
    Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;
    function Int16BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized );
    }
    Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;
    function Uint16BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized );
    }
    Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;
    function Int32BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized );
    }
    Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;
    function Uint32BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized );
    }
    Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;
    function Float32BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized );
    }
    Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;
    function Float64BufferAttribute( array, itemSize, normalized ) {
        BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized );
    }
    Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function DirectGeometry() {
        this.vertices = [];
        this.normals = [];
        this.colors = [];
        this.uvs = [];
        this.uvs2 = [];
        this.groups = [];
        this.morphTargets = {};
        this.skinWeights = [];
        this.skinIndices = [];
        // this.lineDistances = [];
        this.boundingBox = null;
        this.boundingSphere = null;
        // update flags
        this.verticesNeedUpdate = false;
        this.normalsNeedUpdate = false;
        this.colorsNeedUpdate = false;
        this.uvsNeedUpdate = false;
        this.groupsNeedUpdate = false;
    }
    Object.assign( DirectGeometry.prototype, {
        computeGroups: function ( geometry ) {
            var group;
            var groups = [];
            var materialIndex = undefined;
            var faces = geometry.faces;
            for ( var i = 0; i < faces.length; i ++ ) {
                var face = faces[ i ];
                // materials
                if ( face.materialIndex !== materialIndex ) {
                    materialIndex = face.materialIndex;
                    if ( group !== undefined ) {
                        group.count = ( i * 3 ) - group.start;
                        groups.push( group );
                    }
                    group = {
                        start: i * 3,
                        materialIndex: materialIndex
                    };
                }
            }
            if ( group !== undefined ) {
                group.count = ( i * 3 ) - group.start;
                groups.push( group );
            }
            this.groups = groups;
        },
        fromGeometry: function ( geometry ) {
            var faces = geometry.faces;
            var vertices = geometry.vertices;
            var faceVertexUvs = geometry.faceVertexUvs;
            var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
            var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
            // morphs
            var morphTargets = geometry.morphTargets;
            var morphTargetsLength = morphTargets.length;
            var morphTargetsPosition;
            if ( morphTargetsLength > 0 ) {
                morphTargetsPosition = [];
                for ( var i = 0; i < morphTargetsLength; i ++ ) {
                    morphTargetsPosition[ i ] = {
                        name: morphTargets[ i ].name,
                         data: []
                    };
                }
                this.morphTargets.position = morphTargetsPosition;
            }
            var morphNormals = geometry.morphNormals;
            var morphNormalsLength = morphNormals.length;
            var morphTargetsNormal;
            if ( morphNormalsLength > 0 ) {
                morphTargetsNormal = [];
                for ( var i = 0; i < morphNormalsLength; i ++ ) {
                    morphTargetsNormal[ i ] = {
                        name: morphNormals[ i ].name,
                         data: []
                    };
                }
                this.morphTargets.normal = morphTargetsNormal;
            }
            // skins
            var skinIndices = geometry.skinIndices;
            var skinWeights = geometry.skinWeights;
            var hasSkinIndices = skinIndices.length === vertices.length;
            var hasSkinWeights = skinWeights.length === vertices.length;
            //
            if ( vertices.length > 0 && faces.length === 0 ) {
                console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );
            }
            for ( var i = 0; i < faces.length; i ++ ) {
                var face = faces[ i ];
                this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
                var vertexNormals = face.vertexNormals;
                if ( vertexNormals.length === 3 ) {
                    this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
                } else {
                    var normal = face.normal;
                    this.normals.push( normal, normal, normal );
                }
                var vertexColors = face.vertexColors;
                if ( vertexColors.length === 3 ) {
                    this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
                } else {
                    var color = face.color;
                    this.colors.push( color, color, color );
                }
                if ( hasFaceVertexUv === true ) {
                    var vertexUvs = faceVertexUvs[ 0 ][ i ];
                    if ( vertexUvs !== undefined ) {
                        this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
                    } else {
                        console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
                        this.uvs.push( new Vector2(), new Vector2(), new Vector2() );
                    }
                }
                if ( hasFaceVertexUv2 === true ) {
                    var vertexUvs = faceVertexUvs[ 1 ][ i ];
                    if ( vertexUvs !== undefined ) {
                        this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
                    } else {
                        console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
                        this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );
                    }
                }
                // morphs
                for ( var j = 0; j < morphTargetsLength; j ++ ) {
                    var morphTarget = morphTargets[ j ].vertices;
                    morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
                }
                for ( var j = 0; j < morphNormalsLength; j ++ ) {
                    var morphNormal = morphNormals[ j ].vertexNormals[ i ];
                    morphTargetsNormal[ j ].data.push( morphNormal.a, morphNormal.b, morphNormal.c );
                }
                // skins
                if ( hasSkinIndices ) {
                    this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
                }
                if ( hasSkinWeights ) {
                    this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
                }
            }
            this.computeGroups( geometry );
            this.verticesNeedUpdate = geometry.verticesNeedUpdate;
            this.normalsNeedUpdate = geometry.normalsNeedUpdate;
            this.colorsNeedUpdate = geometry.colorsNeedUpdate;
            this.uvsNeedUpdate = geometry.uvsNeedUpdate;
            this.groupsNeedUpdate = geometry.groupsNeedUpdate;
            if ( geometry.boundingSphere !== null ) {
                this.boundingSphere = geometry.boundingSphere.clone();
            }
            if ( geometry.boundingBox !== null ) {
                this.boundingBox = geometry.boundingBox.clone();
            }
            return this;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function arrayMax( array ) {
        if ( array.length === 0 ) { return - Infinity; }
        var max = array[ 0 ];
        for ( var i = 1, l = array.length; i < l; ++ i ) {
            if ( array[ i ] > max ) { max = array[ i ]; }
        }
        return max;
    }
    /**
     * @author alteredq / http://alteredqualia.com/
     * @author mrdoob / http://mrdoob.com/
     */
    var _bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id
    var _m1$2 = new Matrix4();
    var _obj = new Object3D();
    var _offset = new Vector3();
    var _box$2 = new Box3();
    var _boxMorphTargets = new Box3();
    var _vector$4 = new Vector3();
    function BufferGeometry() {
        Object.defineProperty( this, 'id', { value: _bufferGeometryId += 2 } );
        this.uuid = MathUtils.generateUUID();
        this.name = '';
        this.type = 'BufferGeometry';
        this.index = null;
        this.attributes = {};
        this.morphAttributes = {};
        this.morphTargetsRelative = false;
        this.groups = [];
        this.boundingBox = null;
        this.boundingSphere = null;
        this.drawRange = { start: 0, count: Infinity };
        this.userData = {};
    }
    BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
        constructor: BufferGeometry,
        isBufferGeometry: true,
        getIndex: function () {
            return this.index;
        },
        setIndex: function ( index ) {
            if ( Array.isArray( index ) ) {
                this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
            } else {
                this.index = index;
            }
        },
        getAttribute: function ( name ) {
            return this.attributes[ name ];
        },
        setAttribute: function ( name, attribute ) {
            this.attributes[ name ] = attribute;
            return this;
        },
        deleteAttribute: function ( name ) {
            delete this.attributes[ name ];
            return this;
        },
        addGroup: function ( start, count, materialIndex ) {
            this.groups.push( {
                start: start,
                count: count,
                materialIndex: materialIndex !== undefined ? materialIndex : 0
            } );
        },
        clearGroups: function () {
            this.groups = [];
        },
        setDrawRange: function ( start, count ) {
            this.drawRange.start = start;
            this.drawRange.count = count;
        },
        applyMatrix4: function ( matrix ) {
            var position = this.attributes.position;
            if ( position !== undefined ) {
                position.applyMatrix4( matrix );
                position.needsUpdate = true;
            }
            var normal = this.attributes.normal;
            if ( normal !== undefined ) {
                var normalMatrix = new Matrix3().getNormalMatrix( matrix );
                normal.applyNormalMatrix( normalMatrix );
                normal.needsUpdate = true;
            }
            var tangent = this.attributes.tangent;
            if ( tangent !== undefined ) {
                tangent.transformDirection( matrix );
                tangent.needsUpdate = true;
            }
            if ( this.boundingBox !== null ) {
                this.computeBoundingBox();
            }
            if ( this.boundingSphere !== null ) {
                this.computeBoundingSphere();
            }
            return this;
        },
        rotateX: function ( angle ) {
            // rotate geometry around world x-axis
            _m1$2.makeRotationX( angle );
            this.applyMatrix4( _m1$2 );
            return this;
        },
        rotateY: function ( angle ) {
            // rotate geometry around world y-axis
            _m1$2.makeRotationY( angle );
            this.applyMatrix4( _m1$2 );
            return this;
        },
        rotateZ: function ( angle ) {
            // rotate geometry around world z-axis
            _m1$2.makeRotationZ( angle );
            this.applyMatrix4( _m1$2 );
            return this;
        },
        translate: function ( x, y, z ) {
            // translate geometry
            _m1$2.makeTranslation( x, y, z );
            this.applyMatrix4( _m1$2 );
            return this;
        },
        scale: function ( x, y, z ) {
            // scale geometry
            _m1$2.makeScale( x, y, z );
            this.applyMatrix4( _m1$2 );
            return this;
        },
        lookAt: function ( vector ) {
            _obj.lookAt( vector );
            _obj.updateMatrix();
            this.applyMatrix4( _obj.matrix );
            return this;
        },
        center: function () {
            this.computeBoundingBox();
            this.boundingBox.getCenter( _offset ).negate();
            this.translate( _offset.x, _offset.y, _offset.z );
            return this;
        },
        setFromObject: function ( object ) {
            // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
            var geometry = object.geometry;
            if ( object.isPoints || object.isLine ) {
                var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
                var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );
                this.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
                this.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
                if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
                    var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );
                    this.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
                }
                if ( geometry.boundingSphere !== null ) {
                    this.boundingSphere = geometry.boundingSphere.clone();
                }
                if ( geometry.boundingBox !== null ) {
                    this.boundingBox = geometry.boundingBox.clone();
                }
            } else if ( object.isMesh ) {
                if ( geometry && geometry.isGeometry ) {
                    this.fromGeometry( geometry );
                }
            }
            return this;
        },
        setFromPoints: function ( points ) {
            var position = [];
            for ( var i = 0, l = points.length; i < l; i ++ ) {
                var point = points[ i ];
                position.push( point.x, point.y, point.z || 0 );
            }
            this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );
            return this;
        },
        updateFromObject: function ( object ) {
            var geometry = object.geometry;
            if ( object.isMesh ) {
                var direct = geometry.__directGeometry;
                if ( geometry.elementsNeedUpdate === true ) {
                    direct = undefined;
                    geometry.elementsNeedUpdate = false;
                }
                if ( direct === undefined ) {
                    return this.fromGeometry( geometry );
                }
                direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
                direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
                direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
                direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
                direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
                geometry.verticesNeedUpdate = false;
                geometry.normalsNeedUpdate = false;
                geometry.colorsNeedUpdate = false;
                geometry.uvsNeedUpdate = false;
                geometry.groupsNeedUpdate = false;
                geometry = direct;
            }
            var attribute;
            if ( geometry.verticesNeedUpdate === true ) {
                attribute = this.attributes.position;
                if ( attribute !== undefined ) {
                    attribute.copyVector3sArray( geometry.vertices );
                    attribute.needsUpdate = true;
                }
                geometry.verticesNeedUpdate = false;
            }
            if ( geometry.normalsNeedUpdate === true ) {
                attribute = this.attributes.normal;
                if ( attribute !== undefined ) {
                    attribute.copyVector3sArray( geometry.normals );
                    attribute.needsUpdate = true;
                }
                geometry.normalsNeedUpdate = false;
            }
            if ( geometry.colorsNeedUpdate === true ) {
                attribute = this.attributes.color;
                if ( attribute !== undefined ) {
                    attribute.copyColorsArray( geometry.colors );
                    attribute.needsUpdate = true;
                }
                geometry.colorsNeedUpdate = false;
            }
            if ( geometry.uvsNeedUpdate ) {
                attribute = this.attributes.uv;
                if ( attribute !== undefined ) {
                    attribute.copyVector2sArray( geometry.uvs );
                    attribute.needsUpdate = true;
                }
                geometry.uvsNeedUpdate = false;
            }
            if ( geometry.lineDistancesNeedUpdate ) {
                attribute = this.attributes.lineDistance;
                if ( attribute !== undefined ) {
                    attribute.copyArray( geometry.lineDistances );
                    attribute.needsUpdate = true;
                }
                geometry.lineDistancesNeedUpdate = false;
            }
            if ( geometry.groupsNeedUpdate ) {
                geometry.computeGroups( object.geometry );
                this.groups = geometry.groups;
                geometry.groupsNeedUpdate = false;
            }
            return this;
        },
        fromGeometry: function ( geometry ) {
            geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );
            return this.fromDirectGeometry( geometry.__directGeometry );
        },
        fromDirectGeometry: function ( geometry ) {
            var positions = new Float32Array( geometry.vertices.length * 3 );
            this.setAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
            if ( geometry.normals.length > 0 ) {
                var normals = new Float32Array( geometry.normals.length * 3 );
                this.setAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
            }
            if ( geometry.colors.length > 0 ) {
                var colors = new Float32Array( geometry.colors.length * 3 );
                this.setAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
            }
            if ( geometry.uvs.length > 0 ) {
                var uvs = new Float32Array( geometry.uvs.length * 2 );
                this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
            }
            if ( geometry.uvs2.length > 0 ) {
                var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
                this.setAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
            }
            // groups
            this.groups = geometry.groups;
            // morphs
            for ( var name in geometry.morphTargets ) {
                var array = [];
                var morphTargets = geometry.morphTargets[ name ];
                for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {
                    var morphTarget = morphTargets[ i ];
                    var attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 );
                    attribute.name = morphTarget.name;
                    array.push( attribute.copyVector3sArray( morphTarget.data ) );
                }
                this.morphAttributes[ name ] = array;
            }
            // skinning
            if ( geometry.skinIndices.length > 0 ) {
                var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
                this.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
            }
            if ( geometry.skinWeights.length > 0 ) {
                var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
                this.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
            }
            //
            if ( geometry.boundingSphere !== null ) {
                this.boundingSphere = geometry.boundingSphere.clone();
            }
            if ( geometry.boundingBox !== null ) {
                this.boundingBox = geometry.boundingBox.clone();
            }
            return this;
        },
        computeBoundingBox: function () {
            if ( this.boundingBox === null ) {
                this.boundingBox = new Box3();
            }
            var position = this.attributes.position;
            var morphAttributesPosition = this.morphAttributes.position;
            if ( position !== undefined ) {
                this.boundingBox.setFromBufferAttribute( position );
                // process morph attributes if present
                if ( morphAttributesPosition ) {
                    for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
                        var morphAttribute = morphAttributesPosition[ i ];
                        _box$2.setFromBufferAttribute( morphAttribute );
                        if ( this.morphTargetsRelative ) {
                            _vector$4.addVectors( this.boundingBox.min, _box$2.min );
                            this.boundingBox.expandByPoint( _vector$4 );
                            _vector$4.addVectors( this.boundingBox.max, _box$2.max );
                            this.boundingBox.expandByPoint( _vector$4 );
                        } else {
                            this.boundingBox.expandByPoint( _box$2.min );
                            this.boundingBox.expandByPoint( _box$2.max );
                        }
                    }
                }
            } else {
                this.boundingBox.makeEmpty();
            }
            if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
                console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
            }
        },
        computeBoundingSphere: function () {
            if ( this.boundingSphere === null ) {
                this.boundingSphere = new Sphere();
            }
            var position = this.attributes.position;
            var morphAttributesPosition = this.morphAttributes.position;
            if ( position ) {
                // first, find the center of the bounding sphere
                var center = this.boundingSphere.center;
                _box$2.setFromBufferAttribute( position );
                // process morph attributes if present
                if ( morphAttributesPosition ) {
                    for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
                        var morphAttribute = morphAttributesPosition[ i ];
                        _boxMorphTargets.setFromBufferAttribute( morphAttribute );
                        if ( this.morphTargetsRelative ) {
                            _vector$4.addVectors( _box$2.min, _boxMorphTargets.min );
                            _box$2.expandByPoint( _vector$4 );
                            _vector$4.addVectors( _box$2.max, _boxMorphTargets.max );
                            _box$2.expandByPoint( _vector$4 );
                        } else {
                            _box$2.expandByPoint( _boxMorphTargets.min );
                            _box$2.expandByPoint( _boxMorphTargets.max );
                        }
                    }
                }
                _box$2.getCenter( center );
                // second, try to find a boundingSphere with a radius smaller than the
                // boundingSphere of the boundingBox: sqrt(3) smaller in the best case
                var maxRadiusSq = 0;
                for ( var i = 0, il = position.count; i < il; i ++ ) {
                    _vector$4.fromBufferAttribute( position, i );
                    maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );
                }
                // process morph attributes if present
                if ( morphAttributesPosition ) {
                    for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
                        var morphAttribute = morphAttributesPosition[ i ];
                        var morphTargetsRelative = this.morphTargetsRelative;
                        for ( var j = 0, jl = morphAttribute.count; j < jl; j ++ ) {
                            _vector$4.fromBufferAttribute( morphAttribute, j );
                            if ( morphTargetsRelative ) {
                                _offset.fromBufferAttribute( position, j );
                                _vector$4.add( _offset );
                            }
                            maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );
                        }
                    }
                }
                this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
                if ( isNaN( this.boundingSphere.radius ) ) {
                    console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
                }
            }
        },
        computeFaceNormals: function () {
            // backwards compatibility
        },
        computeVertexNormals: function () {
            var index = this.index;
            var attributes = this.attributes;
            if ( attributes.position ) {
                var positions = attributes.position.array;
                if ( attributes.normal === undefined ) {
                    this.setAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );
                } else {
                    // reset existing normals to zero
                    var array = attributes.normal.array;
                    for ( var i = 0, il = array.length; i < il; i ++ ) {
                        array[ i ] = 0;
                    }
                }
                var normals = attributes.normal.array;
                var vA, vB, vC;
                var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
                var cb = new Vector3(), ab = new Vector3();
                // indexed elements
                if ( index ) {
                    var indices = index.array;
                    for ( var i = 0, il = index.count; i < il; i += 3 ) {
                        vA = indices[ i + 0 ] * 3;
                        vB = indices[ i + 1 ] * 3;
                        vC = indices[ i + 2 ] * 3;
                        pA.fromArray( positions, vA );
                        pB.fromArray( positions, vB );
                        pC.fromArray( positions, vC );
                        cb.subVectors( pC, pB );
                        ab.subVectors( pA, pB );
                        cb.cross( ab );
                        normals[ vA ] += cb.x;
                        normals[ vA + 1 ] += cb.y;
                        normals[ vA + 2 ] += cb.z;
                        normals[ vB ] += cb.x;
                        normals[ vB + 1 ] += cb.y;
                        normals[ vB + 2 ] += cb.z;
                        normals[ vC ] += cb.x;
                        normals[ vC + 1 ] += cb.y;
                        normals[ vC + 2 ] += cb.z;
                    }
                } else {
                    // non-indexed elements (unconnected triangle soup)
                    for ( var i = 0, il = positions.length; i < il; i += 9 ) {
                        pA.fromArray( positions, i );
                        pB.fromArray( positions, i + 3 );
                        pC.fromArray( positions, i + 6 );
                        cb.subVectors( pC, pB );
                        ab.subVectors( pA, pB );
                        cb.cross( ab );
                        normals[ i ] = cb.x;
                        normals[ i + 1 ] = cb.y;
                        normals[ i + 2 ] = cb.z;
                        normals[ i + 3 ] = cb.x;
                        normals[ i + 4 ] = cb.y;
                        normals[ i + 5 ] = cb.z;
                        normals[ i + 6 ] = cb.x;
                        normals[ i + 7 ] = cb.y;
                        normals[ i + 8 ] = cb.z;
                    }
                }
                this.normalizeNormals();
                attributes.normal.needsUpdate = true;
            }
        },
        merge: function ( geometry, offset ) {
            if ( ! ( geometry && geometry.isBufferGeometry ) ) {
                console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
                return;
            }
            if ( offset === undefined ) {
                offset = 0;
                console.warn(
                    'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. '
                    + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'
                );
            }
            var attributes = this.attributes;
            for ( var key in attributes ) {
                if ( geometry.attributes[ key ] === undefined ) { continue; }
                var attribute1 = attributes[ key ];
                var attributeArray1 = attribute1.array;
                var attribute2 = geometry.attributes[ key ];
                var attributeArray2 = attribute2.array;
                var attributeOffset = attribute2.itemSize * offset;
                var length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset );
                for ( var i = 0, j = attributeOffset; i < length; i ++, j ++ ) {
                    attributeArray1[ j ] = attributeArray2[ i ];
                }
            }
            return this;
        },
        normalizeNormals: function () {
            var normals = this.attributes.normal;
            for ( var i = 0, il = normals.count; i < il; i ++ ) {
                _vector$4.x = normals.getX( i );
                _vector$4.y = normals.getY( i );
                _vector$4.z = normals.getZ( i );
                _vector$4.normalize();
                normals.setXYZ( i, _vector$4.x, _vector$4.y, _vector$4.z );
            }
        },
        toNonIndexed: function () {
            function convertBufferAttribute( attribute, indices ) {
                var array = attribute.array;
                var itemSize = attribute.itemSize;
                var array2 = new array.constructor( indices.length * itemSize );
                var index = 0, index2 = 0;
                for ( var i = 0, l = indices.length; i < l; i ++ ) {
                    index = indices[ i ] * itemSize;
                    for ( var j = 0; j < itemSize; j ++ ) {
                        array2[ index2 ++ ] = array[ index ++ ];
                    }
                }
                return new BufferAttribute( array2, itemSize );
            }
            //
            if ( this.index === null ) {
                console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
                return this;
            }
            var geometry2 = new BufferGeometry();
            var indices = this.index.array;
            var attributes = this.attributes;
            // attributes
            for ( var name in attributes ) {
                var attribute = attributes[ name ];
                var newAttribute = convertBufferAttribute( attribute, indices );
                geometry2.setAttribute( name, newAttribute );
            }
            // morph attributes
            var morphAttributes = this.morphAttributes;
            for ( name in morphAttributes ) {
                var morphArray = [];
                var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
                for ( var i = 0, il = morphAttribute.length; i < il; i ++ ) {
                    var attribute = morphAttribute[ i ];
                    var newAttribute = convertBufferAttribute( attribute, indices );
                    morphArray.push( newAttribute );
                }
                geometry2.morphAttributes[ name ] = morphArray;
            }
            geometry2.morphTargetsRelative = this.morphTargetsRelative;
            // groups
            var groups = this.groups;
            for ( var i = 0, l = groups.length; i < l; i ++ ) {
                var group = groups[ i ];
                geometry2.addGroup( group.start, group.count, group.materialIndex );
            }
            return geometry2;
        },
        toJSON: function () {
            var data = {
                metadata: {
                    version: 4.5,
                    type: 'BufferGeometry',
                    generator: 'BufferGeometry.toJSON'
                }
            };
            // standard BufferGeometry serialization
            data.uuid = this.uuid;
            data.type = this.type;
            if ( this.name !== '' ) { data.name = this.name; }
            if ( Object.keys( this.userData ).length > 0 ) { data.userData = this.userData; }
            if ( this.parameters !== undefined ) {
                var parameters = this.parameters;
                for ( var key in parameters ) {
                    if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; }
                }
                return data;
            }
            data.data = { attributes: {} };
            var index = this.index;
            if ( index !== null ) {
                data.data.index = {
                    type: index.array.constructor.name,
                    array: Array.prototype.slice.call( index.array )
                };
            }
            var attributes = this.attributes;
            for ( var key in attributes ) {
                var attribute = attributes[ key ];
                var attributeData = attribute.toJSON();
                if ( attribute.name !== '' ) { attributeData.name = attribute.name; }
                data.data.attributes[ key ] = attributeData;
            }
            var morphAttributes = {};
            var hasMorphAttributes = false;
            for ( var key in this.morphAttributes ) {
                var attributeArray = this.morphAttributes[ key ];
                var array = [];
                for ( var i = 0, il = attributeArray.length; i < il; i ++ ) {
                    var attribute = attributeArray[ i ];
                    var attributeData = attribute.toJSON();
                    if ( attribute.name !== '' ) { attributeData.name = attribute.name; }
                    array.push( attributeData );
                }
                if ( array.length > 0 ) {
                    morphAttributes[ key ] = array;
                    hasMorphAttributes = true;
                }
            }
            if ( hasMorphAttributes ) {
                data.data.morphAttributes = morphAttributes;
                data.data.morphTargetsRelative = this.morphTargetsRelative;
            }
            var groups = this.groups;
            if ( groups.length > 0 ) {
                data.data.groups = JSON.parse( JSON.stringify( groups ) );
            }
            var boundingSphere = this.boundingSphere;
            if ( boundingSphere !== null ) {
                data.data.boundingSphere = {
                    center: boundingSphere.center.toArray(),
                    radius: boundingSphere.radius
                };
            }
            return data;
        },
        clone: function () {
            /*
             // Handle primitives
             var parameters = this.parameters;
             if ( parameters !== undefined ) {
             var values = [];
             for ( var key in parameters ) {
             values.push( parameters[ key ] );
             }
             var geometry = Object.create( this.constructor.prototype );
             this.constructor.apply( geometry, values );
             return geometry;
             }
             return new this.constructor().copy( this );
             */
            return new BufferGeometry().copy( this );
        },
        copy: function ( source ) {
            var name, i, l;
            // reset
            this.index = null;
            this.attributes = {};
            this.morphAttributes = {};
            this.groups = [];
            this.boundingBox = null;
            this.boundingSphere = null;
            // name
            this.name = source.name;
            // index
            var index = source.index;
            if ( index !== null ) {
                this.setIndex( index.clone() );
            }
            // attributes
            var attributes = source.attributes;
            for ( name in attributes ) {
                var attribute = attributes[ name ];
                this.setAttribute( name, attribute.clone() );
            }
            // morph attributes
            var morphAttributes = source.morphAttributes;
            for ( name in morphAttributes ) {
                var array = [];
                var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
                for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {
                    array.push( morphAttribute[ i ].clone() );
                }
                this.morphAttributes[ name ] = array;
            }
            this.morphTargetsRelative = source.morphTargetsRelative;
            // groups
            var groups = source.groups;
            for ( i = 0, l = groups.length; i < l; i ++ ) {
                var group = groups[ i ];
                this.addGroup( group.start, group.count, group.materialIndex );
            }
            // bounding box
            var boundingBox = source.boundingBox;
            if ( boundingBox !== null ) {
                this.boundingBox = boundingBox.clone();
            }
            // bounding sphere
            var boundingSphere = source.boundingSphere;
            if ( boundingSphere !== null ) {
                this.boundingSphere = boundingSphere.clone();
            }
            // draw range
            this.drawRange.start = source.drawRange.start;
            this.drawRange.count = source.drawRange.count;
            // user data
            this.userData = source.userData;
            return this;
        },
        dispose: function () {
            this.dispatchEvent( { type: 'dispose' } );
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     * @author mikael emtinger / http://gomo.se/
     * @author jonobr1 / http://jonobr1.com/
     */
    var _inverseMatrix = new Matrix4();
    var _ray = new Ray();
    var _sphere = new Sphere();
    var _vA = new Vector3();
    var _vB = new Vector3();
    var _vC = new Vector3();
    var _tempA = new Vector3();
    var _tempB = new Vector3();
    var _tempC = new Vector3();
    var _morphA = new Vector3();
    var _morphB = new Vector3();
    var _morphC = new Vector3();
    var _uvA = new Vector2();
    var _uvB = new Vector2();
    var _uvC = new Vector2();
    var _intersectionPoint = new Vector3();
    var _intersectionPointWorld = new Vector3();
    function Mesh( geometry, material ) {
        Object3D.call( this );
        this.type = 'Mesh';
        this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
        this.material = material !== undefined ? material : new MeshBasicMaterial();
        this.updateMorphTargets();
    }
    Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Mesh,
        isMesh: true,
        copy: function ( source ) {
            Object3D.prototype.copy.call( this, source );
            if ( source.morphTargetInfluences !== undefined ) {
                this.morphTargetInfluences = source.morphTargetInfluences.slice();
            }
            if ( source.morphTargetDictionary !== undefined ) {
                this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );
            }
            return this;
        },
        updateMorphTargets: function () {
            var geometry = this.geometry;
            var m, ml, name;
            if ( geometry.isBufferGeometry ) {
                var morphAttributes = geometry.morphAttributes;
                var keys = Object.keys( morphAttributes );
                if ( keys.length > 0 ) {
                    var morphAttribute = morphAttributes[ keys[ 0 ] ];
                    if ( morphAttribute !== undefined ) {
                        this.morphTargetInfluences = [];
                        this.morphTargetDictionary = {};
                        for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
                            name = morphAttribute[ m ].name || String( m );
                            this.morphTargetInfluences.push( 0 );
                            this.morphTargetDictionary[ name ] = m;
                        }
                    }
                }
            } else {
                var morphTargets = geometry.morphTargets;
                if ( morphTargets !== undefined && morphTargets.length > 0 ) {
                    console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
                }
            }
        },
        raycast: function ( raycaster, intersects ) {
            var geometry = this.geometry;
            var material = this.material;
            var matrixWorld = this.matrixWorld;
            if ( material === undefined ) { return; }
            // Checking boundingSphere distance to ray
            if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }
            _sphere.copy( geometry.boundingSphere );
            _sphere.applyMatrix4( matrixWorld );
            if ( raycaster.ray.intersectsSphere( _sphere ) === false ) { return; }
            //
            _inverseMatrix.getInverse( matrixWorld );
            _ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix );
            // Check boundingBox before continuing
            if ( geometry.boundingBox !== null ) {
                if ( _ray.intersectsBox( geometry.boundingBox ) === false ) { return; }
            }
            var intersection;
            if ( geometry.isBufferGeometry ) {
                var a, b, c;
                var index = geometry.index;
                var position = geometry.attributes.position;
                var morphPosition = geometry.morphAttributes.position;
                var morphTargetsRelative = geometry.morphTargetsRelative;
                var uv = geometry.attributes.uv;
                var uv2 = geometry.attributes.uv2;
                var groups = geometry.groups;
                var drawRange = geometry.drawRange;
                var i, j, il, jl;
                var group, groupMaterial;
                var start, end;
                if ( index !== null ) {
                    // indexed buffer geometry
                    if ( Array.isArray( material ) ) {
                        for ( i = 0, il = groups.length; i < il; i ++ ) {
                            group = groups[ i ];
                            groupMaterial = material[ group.materialIndex ];
                            start = Math.max( group.start, drawRange.start );
                            end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
                            for ( j = start, jl = end; j < jl; j += 3 ) {
                                a = index.getX( j );
                                b = index.getX( j + 1 );
                                c = index.getX( j + 2 );
                                intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
                                if ( intersection ) {
                                    intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
                                    intersection.face.materialIndex = group.materialIndex;
                                    intersects.push( intersection );
                                }
                            }
                        }
                    } else {
                        start = Math.max( 0, drawRange.start );
                        end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
                        for ( i = start, il = end; i < il; i += 3 ) {
                            a = index.getX( i );
                            b = index.getX( i + 1 );
                            c = index.getX( i + 2 );
                            intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
                            if ( intersection ) {
                                intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
                                intersects.push( intersection );
                            }
                        }
                    }
                } else if ( position !== undefined ) {
                    // non-indexed buffer geometry
                    if ( Array.isArray( material ) ) {
                        for ( i = 0, il = groups.length; i < il; i ++ ) {
                            group = groups[ i ];
                            groupMaterial = material[ group.materialIndex ];
                            start = Math.max( group.start, drawRange.start );
                            end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
                            for ( j = start, jl = end; j < jl; j += 3 ) {
                                a = j;
                                b = j + 1;
                                c = j + 2;
                                intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
                                if ( intersection ) {
                                    intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
                                    intersection.face.materialIndex = group.materialIndex;
                                    intersects.push( intersection );
                                }
                            }
                        }
                    } else {
                        start = Math.max( 0, drawRange.start );
                        end = Math.min( position.count, ( drawRange.start + drawRange.count ) );
                        for ( i = start, il = end; i < il; i += 3 ) {
                            a = i;
                            b = i + 1;
                            c = i + 2;
                            intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
                            if ( intersection ) {
                                intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
                                intersects.push( intersection );
                            }
                        }
                    }
                }
            } else if ( geometry.isGeometry ) {
                var fvA, fvB, fvC;
                var isMultiMaterial = Array.isArray( material );
                var vertices = geometry.vertices;
                var faces = geometry.faces;
                var uvs;
                var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
                if ( faceVertexUvs.length > 0 ) { uvs = faceVertexUvs; }
                for ( var f = 0, fl = faces.length; f < fl; f ++ ) {
                    var face = faces[ f ];
                    var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;
                    if ( faceMaterial === undefined ) { continue; }
                    fvA = vertices[ face.a ];
                    fvB = vertices[ face.b ];
                    fvC = vertices[ face.c ];
                    intersection = checkIntersection( this, faceMaterial, raycaster, _ray, fvA, fvB, fvC, _intersectionPoint );
                    if ( intersection ) {
                        if ( uvs && uvs[ f ] ) {
                            var uvs_f = uvs[ f ];
                            _uvA.copy( uvs_f[ 0 ] );
                            _uvB.copy( uvs_f[ 1 ] );
                            _uvC.copy( uvs_f[ 2 ] );
                            intersection.uv = Triangle.getUV( _intersectionPoint, fvA, fvB, fvC, _uvA, _uvB, _uvC, new Vector2() );
                        }
                        intersection.face = face;
                        intersection.faceIndex = f;
                        intersects.push( intersection );
                    }
                }
            }
        },
        clone: function () {
            return new this.constructor( this.geometry, this.material ).copy( this );
        }
    } );
    function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {
        var intersect;
        if ( material.side === BackSide ) {
            intersect = ray.intersectTriangle( pC, pB, pA, true, point );
        } else {
            intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );
        }
        if ( intersect === null ) { return null; }
        _intersectionPointWorld.copy( point );
        _intersectionPointWorld.applyMatrix4( object.matrixWorld );
        var distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );
        if ( distance < raycaster.near || distance > raycaster.far ) { return null; }
        return {
            distance: distance,
            point: _intersectionPointWorld.clone(),
            object: object
        };
    }
    function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) {
        _vA.fromBufferAttribute( position, a );
        _vB.fromBufferAttribute( position, b );
        _vC.fromBufferAttribute( position, c );
        var morphInfluences = object.morphTargetInfluences;
        if ( material.morphTargets && morphPosition && morphInfluences ) {
            _morphA.set( 0, 0, 0 );
            _morphB.set( 0, 0, 0 );
            _morphC.set( 0, 0, 0 );
            for ( var i = 0, il = morphPosition.length; i < il; i ++ ) {
                var influence = morphInfluences[ i ];
                var morphAttribute = morphPosition[ i ];
                if ( influence === 0 ) { continue; }
                _tempA.fromBufferAttribute( morphAttribute, a );
                _tempB.fromBufferAttribute( morphAttribute, b );
                _tempC.fromBufferAttribute( morphAttribute, c );
                if ( morphTargetsRelative ) {
                    _morphA.addScaledVector( _tempA, influence );
                    _morphB.addScaledVector( _tempB, influence );
                    _morphC.addScaledVector( _tempC, influence );
                } else {
                    _morphA.addScaledVector( _tempA.sub( _vA ), influence );
                    _morphB.addScaledVector( _tempB.sub( _vB ), influence );
                    _morphC.addScaledVector( _tempC.sub( _vC ), influence );
                }
            }
            _vA.add( _morphA );
            _vB.add( _morphB );
            _vC.add( _morphC );
        }
        if ( object.isSkinnedMesh ) {
            object.boneTransform( a, _vA );
            object.boneTransform( b, _vB );
            object.boneTransform( c, _vC );
        }
        var intersection = checkIntersection( object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint );
        if ( intersection ) {
            if ( uv ) {
                _uvA.fromBufferAttribute( uv, a );
                _uvB.fromBufferAttribute( uv, b );
                _uvC.fromBufferAttribute( uv, c );
                intersection.uv = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );
            }
            if ( uv2 ) {
                _uvA.fromBufferAttribute( uv2, a );
                _uvB.fromBufferAttribute( uv2, b );
                _uvC.fromBufferAttribute( uv2, c );
                intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );
            }
            var face = new Face3( a, b, c );
            Triangle.getNormal( _vA, _vB, _vC, face.normal );
            intersection.face = face;
        }
        return intersection;
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author kile / http://kile.stravaganza.org/
     * @author alteredq / http://alteredqualia.com/
     * @author mikael emtinger / http://gomo.se/
     * @author zz85 / http://www.lab4games.net/zz85/blog
     * @author bhouston / http://clara.io
     */
    var _geometryId = 0; // Geometry uses even numbers as Id
    var _m1$3 = new Matrix4();
    var _obj$1 = new Object3D();
    var _offset$1 = new Vector3();
    function Geometry() {
        Object.defineProperty( this, 'id', { value: _geometryId += 2 } );
        this.uuid = MathUtils.generateUUID();
        this.name = '';
        this.type = 'Geometry';
        this.vertices = [];
        this.colors = [];
        this.faces = [];
        this.faceVertexUvs = [[]];
        this.morphTargets = [];
        this.morphNormals = [];
        this.skinWeights = [];
        this.skinIndices = [];
        this.lineDistances = [];
        this.boundingBox = null;
        this.boundingSphere = null;
        // update flags
        this.elementsNeedUpdate = false;
        this.verticesNeedUpdate = false;
        this.uvsNeedUpdate = false;
        this.normalsNeedUpdate = false;
        this.colorsNeedUpdate = false;
        this.lineDistancesNeedUpdate = false;
        this.groupsNeedUpdate = false;
    }
    Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {
        constructor: Geometry,
        isGeometry: true,
        applyMatrix4: function ( matrix ) {
            var normalMatrix = new Matrix3().getNormalMatrix( matrix );
            for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
                var vertex = this.vertices[ i ];
                vertex.applyMatrix4( matrix );
            }
            for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
                var face = this.faces[ i ];
                face.normal.applyMatrix3( normalMatrix ).normalize();
                for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
                    face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
                }
            }
            if ( this.boundingBox !== null ) {
                this.computeBoundingBox();
            }
            if ( this.boundingSphere !== null ) {
                this.computeBoundingSphere();
            }
            this.verticesNeedUpdate = true;
            this.normalsNeedUpdate = true;
            return this;
        },
        rotateX: function ( angle ) {
            // rotate geometry around world x-axis
            _m1$3.makeRotationX( angle );
            this.applyMatrix4( _m1$3 );
            return this;
        },
        rotateY: function ( angle ) {
            // rotate geometry around world y-axis
            _m1$3.makeRotationY( angle );
            this.applyMatrix4( _m1$3 );
            return this;
        },
        rotateZ: function ( angle ) {
            // rotate geometry around world z-axis
            _m1$3.makeRotationZ( angle );
            this.applyMatrix4( _m1$3 );
            return this;
        },
        translate: function ( x, y, z ) {
            // translate geometry
            _m1$3.makeTranslation( x, y, z );
            this.applyMatrix4( _m1$3 );
            return this;
        },
        scale: function ( x, y, z ) {
            // scale geometry
            _m1$3.makeScale( x, y, z );
            this.applyMatrix4( _m1$3 );
            return this;
        },
        lookAt: function ( vector ) {
            _obj$1.lookAt( vector );
            _obj$1.updateMatrix();
            this.applyMatrix4( _obj$1.matrix );
            return this;
        },
        fromBufferGeometry: function ( geometry ) {
            var scope = this;
            var indices = geometry.index !== null ? geometry.index.array : undefined;
            var attributes = geometry.attributes;
            if ( attributes.position === undefined ) {
                console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' );
                return this;
            }
            var positions = attributes.position.array;
            var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
            var colors = attributes.color !== undefined ? attributes.color.array : undefined;
            var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
            var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;
            if ( uvs2 !== undefined ) { this.faceVertexUvs[ 1 ] = []; }
            for ( var i = 0; i < positions.length; i += 3 ) {
                scope.vertices.push( new Vector3().fromArray( positions, i ) );
                if ( colors !== undefined ) {
                    scope.colors.push( new Color().fromArray( colors, i ) );
                }
            }
            function addFace( a, b, c, materialIndex ) {
                var vertexColors = ( colors === undefined ) ? [] : [
                    scope.colors[ a ].clone(),
                    scope.colors[ b ].clone(),
                    scope.colors[ c ].clone() ];
                var vertexNormals = ( normals === undefined ) ? [] : [
                    new Vector3().fromArray( normals, a * 3 ),
                    new Vector3().fromArray( normals, b * 3 ),
                    new Vector3().fromArray( normals, c * 3 )
                ];
                var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
                scope.faces.push( face );
                if ( uvs !== undefined ) {
                    scope.faceVertexUvs[ 0 ].push( [
                        new Vector2().fromArray( uvs, a * 2 ),
                        new Vector2().fromArray( uvs, b * 2 ),
                        new Vector2().fromArray( uvs, c * 2 )
                    ] );
                }
                if ( uvs2 !== undefined ) {
                    scope.faceVertexUvs[ 1 ].push( [
                        new Vector2().fromArray( uvs2, a * 2 ),
                        new Vector2().fromArray( uvs2, b * 2 ),
                        new Vector2().fromArray( uvs2, c * 2 )
                    ] );
                }
            }
            var groups = geometry.groups;
            if ( groups.length > 0 ) {
                for ( var i = 0; i < groups.length; i ++ ) {
                    var group = groups[ i ];
                    var start = group.start;
                    var count = group.count;
                    for ( var j = start, jl = start + count; j < jl; j += 3 ) {
                        if ( indices !== undefined ) {
                            addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );
                        } else {
                            addFace( j, j + 1, j + 2, group.materialIndex );
                        }
                    }
                }
            } else {
                if ( indices !== undefined ) {
                    for ( var i = 0; i < indices.length; i += 3 ) {
                        addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );
                    }
                } else {
                    for ( var i = 0; i < positions.length / 3; i += 3 ) {
                        addFace( i, i + 1, i + 2 );
                    }
                }
            }
            this.computeFaceNormals();
            if ( geometry.boundingBox !== null ) {
                this.boundingBox = geometry.boundingBox.clone();
            }
            if ( geometry.boundingSphere !== null ) {
                this.boundingSphere = geometry.boundingSphere.clone();
            }
            return this;
        },
        center: function () {
            this.computeBoundingBox();
            this.boundingBox.getCenter( _offset$1 ).negate();
            this.translate( _offset$1.x, _offset$1.y, _offset$1.z );
            return this;
        },
        normalize: function () {
            this.computeBoundingSphere();
            var center = this.boundingSphere.center;
            var radius = this.boundingSphere.radius;
            var s = radius === 0 ? 1 : 1.0 / radius;
            var matrix = new Matrix4();
            matrix.set(
                s, 0, 0, - s * center.x,
                0, s, 0, - s * center.y,
                0, 0, s, - s * center.z,
                0, 0, 0, 1
            );
            this.applyMatrix4( matrix );
            return this;
        },
        computeFaceNormals: function () {
            var cb = new Vector3(), ab = new Vector3();
            for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {
                var face = this.faces[ f ];
                var vA = this.vertices[ face.a ];
                var vB = this.vertices[ face.b ];
                var vC = this.vertices[ face.c ];
                cb.subVectors( vC, vB );
                ab.subVectors( vA, vB );
                cb.cross( ab );
                cb.normalize();
                face.normal.copy( cb );
            }
        },
        computeVertexNormals: function ( areaWeighted ) {
            if ( areaWeighted === undefined ) { areaWeighted = true; }
            var v, vl, f, fl, face, vertices;
            vertices = new Array( this.vertices.length );
            for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
                vertices[ v ] = new Vector3();
            }
            if ( areaWeighted ) {
                // vertex normals weighted by triangle areas
                // http://www.iquilezles.org/www/articles/normals/normals.htm
                var vA, vB, vC;
                var cb = new Vector3(), ab = new Vector3();
                for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                    face = this.faces[ f ];
                    vA = this.vertices[ face.a ];
                    vB = this.vertices[ face.b ];
                    vC = this.vertices[ face.c ];
                    cb.subVectors( vC, vB );
                    ab.subVectors( vA, vB );
                    cb.cross( ab );
                    vertices[ face.a ].add( cb );
                    vertices[ face.b ].add( cb );
                    vertices[ face.c ].add( cb );
                }
            } else {
                this.computeFaceNormals();
                for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                    face = this.faces[ f ];
                    vertices[ face.a ].add( face.normal );
                    vertices[ face.b ].add( face.normal );
                    vertices[ face.c ].add( face.normal );
                }
            }
            for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
                vertices[ v ].normalize();
            }
            for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                face = this.faces[ f ];
                var vertexNormals = face.vertexNormals;
                if ( vertexNormals.length === 3 ) {
                    vertexNormals[ 0 ].copy( vertices[ face.a ] );
                    vertexNormals[ 1 ].copy( vertices[ face.b ] );
                    vertexNormals[ 2 ].copy( vertices[ face.c ] );
                } else {
                    vertexNormals[ 0 ] = vertices[ face.a ].clone();
                    vertexNormals[ 1 ] = vertices[ face.b ].clone();
                    vertexNormals[ 2 ] = vertices[ face.c ].clone();
                }
            }
            if ( this.faces.length > 0 ) {
                this.normalsNeedUpdate = true;
            }
        },
        computeFlatVertexNormals: function () {
            var f, fl, face;
            this.computeFaceNormals();
            for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                face = this.faces[ f ];
                var vertexNormals = face.vertexNormals;
                if ( vertexNormals.length === 3 ) {
                    vertexNormals[ 0 ].copy( face.normal );
                    vertexNormals[ 1 ].copy( face.normal );
                    vertexNormals[ 2 ].copy( face.normal );
                } else {
                    vertexNormals[ 0 ] = face.normal.clone();
                    vertexNormals[ 1 ] = face.normal.clone();
                    vertexNormals[ 2 ] = face.normal.clone();
                }
            }
            if ( this.faces.length > 0 ) {
                this.normalsNeedUpdate = true;
            }
        },
        computeMorphNormals: function () {
            var i, il, f, fl, face;
            // save original normals
            // - create temp variables on first access
            // otherwise just copy (for faster repeated calls)
            for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                face = this.faces[ f ];
                if ( ! face.__originalFaceNormal ) {
                    face.__originalFaceNormal = face.normal.clone();
                } else {
                    face.__originalFaceNormal.copy( face.normal );
                }
                if ( ! face.__originalVertexNormals ) { face.__originalVertexNormals = []; }
                for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
                    if ( ! face.__originalVertexNormals[ i ] ) {
                        face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
                    } else {
                        face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
                    }
                }
            }
            // use temp geometry to compute face and vertex normals for each morph
            var tmpGeo = new Geometry();
            tmpGeo.faces = this.faces;
            for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
                // create on first access
                if ( ! this.morphNormals[ i ] ) {
                    this.morphNormals[ i ] = {};
                    this.morphNormals[ i ].faceNormals = [];
                    this.morphNormals[ i ].vertexNormals = [];
                    var dstNormalsFace = this.morphNormals[ i ].faceNormals;
                    var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
                    var faceNormal, vertexNormals;
                    for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                        faceNormal = new Vector3();
                        vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };
                        dstNormalsFace.push( faceNormal );
                        dstNormalsVertex.push( vertexNormals );
                    }
                }
                var morphNormals = this.morphNormals[ i ];
                // set vertices to morph target
                tmpGeo.vertices = this.morphTargets[ i ].vertices;
                // compute morph normals
                tmpGeo.computeFaceNormals();
                tmpGeo.computeVertexNormals();
                // store morph normals
                var faceNormal, vertexNormals;
                for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                    face = this.faces[ f ];
                    faceNormal = morphNormals.faceNormals[ f ];
                    vertexNormals = morphNormals.vertexNormals[ f ];
                    faceNormal.copy( face.normal );
                    vertexNormals.a.copy( face.vertexNormals[ 0 ] );
                    vertexNormals.b.copy( face.vertexNormals[ 1 ] );
                    vertexNormals.c.copy( face.vertexNormals[ 2 ] );
                }
            }
            // restore original normals
            for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
                face = this.faces[ f ];
                face.normal = face.__originalFaceNormal;
                face.vertexNormals = face.__originalVertexNormals;
            }
        },
        computeBoundingBox: function () {
            if ( this.boundingBox === null ) {
                this.boundingBox = new Box3();
            }
            this.boundingBox.setFromPoints( this.vertices );
        },
        computeBoundingSphere: function () {
            if ( this.boundingSphere === null ) {
                this.boundingSphere = new Sphere();
            }
            this.boundingSphere.setFromPoints( this.vertices );
        },
        merge: function ( geometry, matrix, materialIndexOffset ) {
            if ( ! ( geometry && geometry.isGeometry ) ) {
                console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
                return;
            }
            var normalMatrix,
                vertexOffset = this.vertices.length,
                vertices1 = this.vertices,
                vertices2 = geometry.vertices,
                faces1 = this.faces,
                faces2 = geometry.faces,
                colors1 = this.colors,
                colors2 = geometry.colors;
            if ( materialIndexOffset === undefined ) { materialIndexOffset = 0; }
            if ( matrix !== undefined ) {
                normalMatrix = new Matrix3().getNormalMatrix( matrix );
            }
            // vertices
            for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
                var vertex = vertices2[ i ];
                var vertexCopy = vertex.clone();
                if ( matrix !== undefined ) { vertexCopy.applyMatrix4( matrix ); }
                vertices1.push( vertexCopy );
            }
            // colors
            for ( var i = 0, il = colors2.length; i < il; i ++ ) {
                colors1.push( colors2[ i ].clone() );
            }
            // faces
            for ( i = 0, il = faces2.length; i < il; i ++ ) {
                var face = faces2[ i ], faceCopy, normal, color,
                    faceVertexNormals = face.vertexNormals,
                    faceVertexColors = face.vertexColors;
                faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
                faceCopy.normal.copy( face.normal );
                if ( normalMatrix !== undefined ) {
                    faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
                }
                for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
                    normal = faceVertexNormals[ j ].clone();
                    if ( normalMatrix !== undefined ) {
                        normal.applyMatrix3( normalMatrix ).normalize();
                    }
                    faceCopy.vertexNormals.push( normal );
                }
                faceCopy.color.copy( face.color );
                for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
                    color = faceVertexColors[ j ];
                    faceCopy.vertexColors.push( color.clone() );
                }
                faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
                faces1.push( faceCopy );
            }
            // uvs
            for ( var i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {
                var faceVertexUvs2 = geometry.faceVertexUvs[ i ];
                if ( this.faceVertexUvs[ i ] === undefined ) { this.faceVertexUvs[ i ] = []; }
                for ( var j = 0, jl = faceVertexUvs2.length; j < jl; j ++ ) {
                    var uvs2 = faceVertexUvs2[ j ], uvsCopy = [];
                    for ( var k = 0, kl = uvs2.length; k < kl; k ++ ) {
                        uvsCopy.push( uvs2[ k ].clone() );
                    }
                    this.faceVertexUvs[ i ].push( uvsCopy );
                }
            }
        },
        mergeMesh: function ( mesh ) {
            if ( ! ( mesh && mesh.isMesh ) ) {
                console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
                return;
            }
            if ( mesh.matrixAutoUpdate ) { mesh.updateMatrix(); }
            this.merge( mesh.geometry, mesh.matrix );
        },
        /*
         * Checks for duplicate vertices with hashmap.
         * Duplicated vertices are removed
         * and faces' vertices are updated.
         */
        mergeVertices: function () {
            var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
            var unique = [], changes = [];
            var v, key;
            var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
            var precision = Math.pow( 10, precisionPoints );
            var i, il, face;
            var indices, j, jl;
            for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
                v = this.vertices[ i ];
                key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
                if ( verticesMap[ key ] === undefined ) {
                    verticesMap[ key ] = i;
                    unique.push( this.vertices[ i ] );
                    changes[ i ] = unique.length - 1;
                } else {
                    //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
                    changes[ i ] = changes[ verticesMap[ key ] ];
                }
            }
            // if faces are completely degenerate after merging vertices, we
            // have to remove them from the geometry.
            var faceIndicesToRemove = [];
            for ( i = 0, il = this.faces.length; i < il; i ++ ) {
                face = this.faces[ i ];
                face.a = changes[ face.a ];
                face.b = changes[ face.b ];
                face.c = changes[ face.c ];
                indices = [ face.a, face.b, face.c ];
                // if any duplicate vertices are found in a Face3
                // we have to remove the face as nothing can be saved
                for ( var n = 0; n < 3; n ++ ) {
                    if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
                        faceIndicesToRemove.push( i );
                        break;
                    }
                }
            }
            for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
                var idx = faceIndicesToRemove[ i ];
                this.faces.splice( idx, 1 );
                for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
                    this.faceVertexUvs[ j ].splice( idx, 1 );
                }
            }
            // Use unique set of vertices
            var diff = this.vertices.length - unique.length;
            this.vertices = unique;
            return diff;
        },
        setFromPoints: function ( points ) {
            this.vertices = [];
            for ( var i = 0, l = points.length; i < l; i ++ ) {
                var point = points[ i ];
                this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );
            }
            return this;
        },
        sortFacesByMaterialIndex: function () {
            var faces = this.faces;
            var length = faces.length;
            // tag faces
            for ( var i = 0; i < length; i ++ ) {
                faces[ i ]._id = i;
            }
            // sort faces
            function materialIndexSort( a, b ) {
                return a.materialIndex - b.materialIndex;
            }
            faces.sort( materialIndexSort );
            // sort uvs
            var uvs1 = this.faceVertexUvs[ 0 ];
            var uvs2 = this.faceVertexUvs[ 1 ];
            var newUvs1, newUvs2;
            if ( uvs1 && uvs1.length === length ) { newUvs1 = []; }
            if ( uvs2 && uvs2.length === length ) { newUvs2 = []; }
            for ( var i = 0; i < length; i ++ ) {
                var id = faces[ i ]._id;
                if ( newUvs1 ) { newUvs1.push( uvs1[ id ] ); }
                if ( newUvs2 ) { newUvs2.push( uvs2[ id ] ); }
            }
            if ( newUvs1 ) { this.faceVertexUvs[ 0 ] = newUvs1; }
            if ( newUvs2 ) { this.faceVertexUvs[ 1 ] = newUvs2; }
        },
        toJSON: function () {
            var data = {
                metadata: {
                    version: 4.5,
                    type: 'Geometry',
                    generator: 'Geometry.toJSON'
                }
            };
            // standard Geometry serialization
            data.uuid = this.uuid;
            data.type = this.type;
            if ( this.name !== '' ) { data.name = this.name; }
            if ( this.parameters !== undefined ) {
                var parameters = this.parameters;
                for ( var key in parameters ) {
                    if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; }
                }
                return data;
            }
            var vertices = [];
            for ( var i = 0; i < this.vertices.length; i ++ ) {
                var vertex = this.vertices[ i ];
                vertices.push( vertex.x, vertex.y, vertex.z );
            }
            var faces = [];
            var normals = [];
            var normalsHash = {};
            var colors = [];
            var colorsHash = {};
            var uvs = [];
            var uvsHash = {};
            for ( var i = 0; i < this.faces.length; i ++ ) {
                var face = this.faces[ i ];
                var hasMaterial = true;
                var hasFaceUv = false; // deprecated
                var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
                var hasFaceNormal = face.normal.length() > 0;
                var hasFaceVertexNormal = face.vertexNormals.length > 0;
                var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
                var hasFaceVertexColor = face.vertexColors.length > 0;
                var faceType = 0;
                faceType = setBit( faceType, 0, 0 ); // isQuad
                faceType = setBit( faceType, 1, hasMaterial );
                faceType = setBit( faceType, 2, hasFaceUv );
                faceType = setBit( faceType, 3, hasFaceVertexUv );
                faceType = setBit( faceType, 4, hasFaceNormal );
                faceType = setBit( faceType, 5, hasFaceVertexNormal );
                faceType = setBit( faceType, 6, hasFaceColor );
                faceType = setBit( faceType, 7, hasFaceVertexColor );
                faces.push( faceType );
                faces.push( face.a, face.b, face.c );
                faces.push( face.materialIndex );
                if ( hasFaceVertexUv ) {
                    var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
                    faces.push(
                        getUvIndex( faceVertexUvs[ 0 ] ),
                        getUvIndex( faceVertexUvs[ 1 ] ),
                        getUvIndex( faceVertexUvs[ 2 ] )
                    );
                }
                if ( hasFaceNormal ) {
                    faces.push( getNormalIndex( face.normal ) );
                }
                if ( hasFaceVertexNormal ) {
                    var vertexNormals = face.vertexNormals;
                    faces.push(
                        getNormalIndex( vertexNormals[ 0 ] ),
                        getNormalIndex( vertexNormals[ 1 ] ),
                        getNormalIndex( vertexNormals[ 2 ] )
                    );
                }
                if ( hasFaceColor ) {
                    faces.push( getColorIndex( face.color ) );
                }
                if ( hasFaceVertexColor ) {
                    var vertexColors = face.vertexColors;
                    faces.push(
                        getColorIndex( vertexColors[ 0 ] ),
                        getColorIndex( vertexColors[ 1 ] ),
                        getColorIndex( vertexColors[ 2 ] )
                    );
                }
            }
            function setBit( value, position, enabled ) {
                return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
            }
            function getNormalIndex( normal ) {
                var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
                if ( normalsHash[ hash ] !== undefined ) {
                    return normalsHash[ hash ];
                }
                normalsHash[ hash ] = normals.length / 3;
                normals.push( normal.x, normal.y, normal.z );
                return normalsHash[ hash ];
            }
            function getColorIndex( color ) {
                var hash = color.r.toString() + color.g.toString() + color.b.toString();
                if ( colorsHash[ hash ] !== undefined ) {
                    return colorsHash[ hash ];
                }
                colorsHash[ hash ] = colors.length;
                colors.push( color.getHex() );
                return colorsHash[ hash ];
            }
            function getUvIndex( uv ) {
                var hash = uv.x.toString() + uv.y.toString();
                if ( uvsHash[ hash ] !== undefined ) {
                    return uvsHash[ hash ];
                }
                uvsHash[ hash ] = uvs.length / 2;
                uvs.push( uv.x, uv.y );
                return uvsHash[ hash ];
            }
            data.data = {};
            data.data.vertices = vertices;
            data.data.normals = normals;
            if ( colors.length > 0 ) { data.data.colors = colors; }
            if ( uvs.length > 0 ) { data.data.uvs = [ uvs ]; } // temporal backward compatibility
            data.data.faces = faces;
            return data;
        },
        clone: function () {
            /*
             // Handle primitives
             var parameters = this.parameters;
             if ( parameters !== undefined ) {
             var values = [];
             for ( var key in parameters ) {
             values.push( parameters[ key ] );
             }
             var geometry = Object.create( this.constructor.prototype );
             this.constructor.apply( geometry, values );
             return geometry;
             }
             return new this.constructor().copy( this );
             */
            return new Geometry().copy( this );
        },
        copy: function ( source ) {
            var i, il, j, jl, k, kl;
            // reset
            this.vertices = [];
            this.colors = [];
            this.faces = [];
            this.faceVertexUvs = [[]];
            this.morphTargets = [];
            this.morphNormals = [];
            this.skinWeights = [];
            this.skinIndices = [];
            this.lineDistances = [];
            this.boundingBox = null;
            this.boundingSphere = null;
            // name
            this.name = source.name;
            // vertices
            var vertices = source.vertices;
            for ( i = 0, il = vertices.length; i < il; i ++ ) {
                this.vertices.push( vertices[ i ].clone() );
            }
            // colors
            var colors = source.colors;
            for ( i = 0, il = colors.length; i < il; i ++ ) {
                this.colors.push( colors[ i ].clone() );
            }
            // faces
            var faces = source.faces;
            for ( i = 0, il = faces.length; i < il; i ++ ) {
                this.faces.push( faces[ i ].clone() );
            }
            // face vertex uvs
            for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
                var faceVertexUvs = source.faceVertexUvs[ i ];
                if ( this.faceVertexUvs[ i ] === undefined ) {
                    this.faceVertexUvs[ i ] = [];
                }
                for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
                    var uvs = faceVertexUvs[ j ], uvsCopy = [];
                    for ( k = 0, kl = uvs.length; k < kl; k ++ ) {
                        var uv = uvs[ k ];
                        uvsCopy.push( uv.clone() );
                    }
                    this.faceVertexUvs[ i ].push( uvsCopy );
                }
            }
            // morph targets
            var morphTargets = source.morphTargets;
            for ( i = 0, il = morphTargets.length; i < il; i ++ ) {
                var morphTarget = {};
                morphTarget.name = morphTargets[ i ].name;
                // vertices
                if ( morphTargets[ i ].vertices !== undefined ) {
                    morphTarget.vertices = [];
                    for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {
                        morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );
                    }
                }
                // normals
                if ( morphTargets[ i ].normals !== undefined ) {
                    morphTarget.normals = [];
                    for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {
                        morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );
                    }
                }
                this.morphTargets.push( morphTarget );
            }
            // morph normals
            var morphNormals = source.morphNormals;
            for ( i = 0, il = morphNormals.length; i < il; i ++ ) {
                var morphNormal = {};
                // vertex normals
                if ( morphNormals[ i ].vertexNormals !== undefined ) {
                    morphNormal.vertexNormals = [];
                    for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {
                        var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
                        var destVertexNormal = {};
                        destVertexNormal.a = srcVertexNormal.a.clone();
                        destVertexNormal.b = srcVertexNormal.b.clone();
                        destVertexNormal.c = srcVertexNormal.c.clone();
                        morphNormal.vertexNormals.push( destVertexNormal );
                    }
                }
                // face normals
                if ( morphNormals[ i ].faceNormals !== undefined ) {
                    morphNormal.faceNormals = [];
                    for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {
                        morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );
                    }
                }
                this.morphNormals.push( morphNormal );
            }
            // skin weights
            var skinWeights = source.skinWeights;
            for ( i = 0, il = skinWeights.length; i < il; i ++ ) {
                this.skinWeights.push( skinWeights[ i ].clone() );
            }
            // skin indices
            var skinIndices = source.skinIndices;
            for ( i = 0, il = skinIndices.length; i < il; i ++ ) {
                this.skinIndices.push( skinIndices[ i ].clone() );
            }
            // line distances
            var lineDistances = source.lineDistances;
            for ( i = 0, il = lineDistances.length; i < il; i ++ ) {
                this.lineDistances.push( lineDistances[ i ] );
            }
            // bounding box
            var boundingBox = source.boundingBox;
            if ( boundingBox !== null ) {
                this.boundingBox = boundingBox.clone();
            }
            // bounding sphere
            var boundingSphere = source.boundingSphere;
            if ( boundingSphere !== null ) {
                this.boundingSphere = boundingSphere.clone();
            }
            // update flags
            this.elementsNeedUpdate = source.elementsNeedUpdate;
            this.verticesNeedUpdate = source.verticesNeedUpdate;
            this.uvsNeedUpdate = source.uvsNeedUpdate;
            this.normalsNeedUpdate = source.normalsNeedUpdate;
            this.colorsNeedUpdate = source.colorsNeedUpdate;
            this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
            this.groupsNeedUpdate = source.groupsNeedUpdate;
            return this;
        },
        dispose: function () {
            this.dispatchEvent( { type: 'dispose' } );
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author Mugen87 / https://github.com/Mugen87
     */
    // BoxGeometry
    var BoxGeometry = /*@__PURE__*/(function (Geometry) {
        function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {
            Geometry.call(this);
            this.type = 'BoxGeometry';
            this.parameters = {
                width: width,
                height: height,
                depth: depth,
                widthSegments: widthSegments,
                heightSegments: heightSegments,
                depthSegments: depthSegments
            };
            this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
            this.mergeVertices();
        }
        if ( Geometry ) BoxGeometry.__proto__ = Geometry;
        BoxGeometry.prototype = Object.create( Geometry && Geometry.prototype );
        BoxGeometry.prototype.constructor = BoxGeometry;
        return BoxGeometry;
    }(Geometry));
    // BoxBufferGeometry
    var BoxBufferGeometry = /*@__PURE__*/(function (BufferGeometry) {
        function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {
            BufferGeometry.call(this);
            this.type = 'BoxBufferGeometry';
            this.parameters = {
                width: width,
                height: height,
                depth: depth,
                widthSegments: widthSegments,
                heightSegments: heightSegments,
                depthSegments: depthSegments
            };
            var scope = this;
            width = width || 1;
            height = height || 1;
            depth = depth || 1;
            // segments
            widthSegments = Math.floor( widthSegments ) || 1;
            heightSegments = Math.floor( heightSegments ) || 1;
            depthSegments = Math.floor( depthSegments ) || 1;
            // buffers
            var indices = [];
            var vertices = [];
            var normals = [];
            var uvs = [];
            // helper variables
            var numberOfVertices = 0;
            var groupStart = 0;
            // build each side of the box geometry
            buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
            buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
            buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
            buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
            buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
            buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
            // build geometry
            this.setIndex( indices );
            this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
            this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
            this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
            function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
                var segmentWidth = width / gridX;
                var segmentHeight = height / gridY;
                var widthHalf = width / 2;
                var heightHalf = height / 2;
                var depthHalf = depth / 2;
                var gridX1 = gridX + 1;
                var gridY1 = gridY + 1;
                var vertexCounter = 0;
                var groupCount = 0;
                var ix, iy;
                var vector = new Vector3();
                // generate vertices, normals and uvs
                for ( iy = 0; iy < gridY1; iy ++ ) {
                    var y = iy * segmentHeight - heightHalf;
                    for ( ix = 0; ix < gridX1; ix ++ ) {
                        var x = ix * segmentWidth - widthHalf;
                        // set values to correct vector component
                        vector[ u ] = x * udir;
                        vector[ v ] = y * vdir;
                        vector[ w ] = depthHalf;
                        // now apply vector to vertex buffer
                        vertices.push( vector.x, vector.y, vector.z );
                        // set values to correct vector component
                        vector[ u ] = 0;
                        vector[ v ] = 0;
                        vector[ w ] = depth > 0 ? 1 : - 1;
                        // now apply vector to normal buffer
                        normals.push( vector.x, vector.y, vector.z );
                        // uvs
                        uvs.push( ix / gridX );
                        uvs.push( 1 - ( iy / gridY ) );
                        // counters
                        vertexCounter += 1;
                    }
                }
                // indices
                // 1. you need three indices to draw a single face
                // 2. a single segment consists of two faces
                // 3. so we need to generate six (2*3) indices per segment
                for ( iy = 0; iy < gridY; iy ++ ) {
                    for ( ix = 0; ix < gridX; ix ++ ) {
                        var a = numberOfVertices + ix + gridX1 * iy;
                        var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
                        var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
                        var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
                        // faces
                        indices.push( a, b, d );
                        indices.push( b, c, d );
                        // increase counter
                        groupCount += 6;
                    }
                }
                // add a group to the geometry. this will ensure multi material support
                scope.addGroup( groupStart, groupCount, materialIndex );
                // calculate new start value for groups
                groupStart += groupCount;
                // update total number of vertices
                numberOfVertices += vertexCounter;
            }
        }
        if ( BufferGeometry ) BoxBufferGeometry.__proto__ = BufferGeometry;
        BoxBufferGeometry.prototype = Object.create( BufferGeometry && BufferGeometry.prototype );
        BoxBufferGeometry.prototype.constructor = BoxBufferGeometry;
        return BoxBufferGeometry;
    }(BufferGeometry));
    /**
     * Uniform Utilities
     */
    function cloneUniforms( src ) {
        var dst = {};
        for ( var u in src ) {
            dst[ u ] = {};
            for ( var p in src[ u ] ) {
                var property = src[ u ][ p ];
                if ( property && ( property.isColor ||
                    property.isMatrix3 || property.isMatrix4 ||
                    property.isVector2 || property.isVector3 || property.isVector4 ||
                    property.isTexture ) ) {
                    dst[ u ][ p ] = property.clone();
                } else if ( Array.isArray( property ) ) {
                    dst[ u ][ p ] = property.slice();
                } else {
                    dst[ u ][ p ] = property;
                }
            }
        }
        return dst;
    }
    function mergeUniforms( uniforms ) {
        var merged = {};
        for ( var u = 0; u < uniforms.length; u ++ ) {
            var tmp = cloneUniforms( uniforms[ u ] );
            for ( var p in tmp ) {
                merged[ p ] = tmp[ p ];
            }
        }
        return merged;
    }
    // Legacy
    var UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms };
    var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
    var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
    /**
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * defines: { "label" : "value" },
     * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
     *
     * fragmentShader: ,
     * vertexShader: ,
     *
     * wireframe: ,
     * wireframeLinewidth: ,
     *
     * lights: ,
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function ShaderMaterial( parameters ) {
        Material.call( this );
        this.type = 'ShaderMaterial';
        this.defines = {};
        this.uniforms = {};
        this.vertexShader = default_vertex;
        this.fragmentShader = default_fragment;
        this.linewidth = 1;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.fog = false; // set to use scene fog
        this.lights = false; // set to use scene lights
        this.clipping = false; // set to use user-defined clipping planes
        this.skinning = false; // set to use skinning attribute streams
        this.morphTargets = false; // set to use morph targets
        this.morphNormals = false; // set to use morph normals
        this.extensions = {
            derivatives: false, // set to use derivatives
            fragDepth: false, // set to use fragment depth values
            drawBuffers: false, // set to use draw buffers
            shaderTextureLOD: false // set to use shader texture LOD
        };
        // When rendered geometry doesn't include these attributes but the material does,
        // use these default values in WebGL. This avoids errors when buffer data is missing.
        this.defaultAttributeValues = {
            'color': [ 1, 1, 1 ],
            'uv': [ 0, 0 ],
            'uv2': [ 0, 0 ]
        };
        this.index0AttributeName = undefined;
        this.uniformsNeedUpdate = false;
        if ( parameters !== undefined ) {
            if ( parameters.attributes !== undefined ) {
                console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
            }
            this.setValues( parameters );
        }
    }
    ShaderMaterial.prototype = Object.create( Material.prototype );
    ShaderMaterial.prototype.constructor = ShaderMaterial;
    ShaderMaterial.prototype.isShaderMaterial = true;
    ShaderMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.fragmentShader = source.fragmentShader;
        this.vertexShader = source.vertexShader;
        this.uniforms = cloneUniforms( source.uniforms );
        this.defines = Object.assign( {}, source.defines );
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.lights = source.lights;
        this.clipping = source.clipping;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        this.extensions = source.extensions;
        return this;
    };
    ShaderMaterial.prototype.toJSON = function ( meta ) {
        var data = Material.prototype.toJSON.call( this, meta );
        data.uniforms = {};
        for ( var name in this.uniforms ) {
            var uniform = this.uniforms[ name ];
            var value = uniform.value;
            if ( value && value.isTexture ) {
                data.uniforms[ name ] = {
                    type: 't',
                    value: value.toJSON( meta ).uuid
                };
            } else if ( value && value.isColor ) {
                data.uniforms[ name ] = {
                    type: 'c',
                    value: value.getHex()
                };
            } else if ( value && value.isVector2 ) {
                data.uniforms[ name ] = {
                    type: 'v2',
                    value: value.toArray()
                };
            } else if ( value && value.isVector3 ) {
                data.uniforms[ name ] = {
                    type: 'v3',
                    value: value.toArray()
                };
            } else if ( value && value.isVector4 ) {
                data.uniforms[ name ] = {
                    type: 'v4',
                    value: value.toArray()
                };
            } else if ( value && value.isMatrix3 ) {
                data.uniforms[ name ] = {
                    type: 'm3',
                    value: value.toArray()
                };
            } else if ( value && value.isMatrix4 ) {
                data.uniforms[ name ] = {
                    type: 'm4',
                    value: value.toArray()
                };
            } else {
                data.uniforms[ name ] = {
                    value: value
                };
                // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
            }
        }
        if ( Object.keys( this.defines ).length > 0 ) { data.defines = this.defines; }
        data.vertexShader = this.vertexShader;
        data.fragmentShader = this.fragmentShader;
        var extensions = {};
        for ( var key in this.extensions ) {
            if ( this.extensions[ key ] === true ) { extensions[ key ] = true; }
        }
        if ( Object.keys( extensions ).length > 0 ) { data.extensions = extensions; }
        return data;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author mikael emtinger / http://gomo.se/
     * @author WestLangley / http://github.com/WestLangley
    */
    function Camera() {
        Object3D.call( this );
        this.type = 'Camera';
        this.matrixWorldInverse = new Matrix4();
        this.projectionMatrix = new Matrix4();
        this.projectionMatrixInverse = new Matrix4();
    }
    Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Camera,
        isCamera: true,
        copy: function ( source, recursive ) {
            Object3D.prototype.copy.call( this, source, recursive );
            this.matrixWorldInverse.copy( source.matrixWorldInverse );
            this.projectionMatrix.copy( source.projectionMatrix );
            this.projectionMatrixInverse.copy( source.projectionMatrixInverse );
            return this;
        },
        getWorldDirection: function ( target ) {
            if ( target === undefined ) {
                console.warn( 'THREE.Camera: .getWorldDirection() target is now required' );
                target = new Vector3();
            }
            this.updateMatrixWorld( true );
            var e = this.matrixWorld.elements;
            return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();
        },
        updateMatrixWorld: function ( force ) {
            Object3D.prototype.updateMatrixWorld.call( this, force );
            this.matrixWorldInverse.getInverse( this.matrixWorld );
        },
        updateWorldMatrix: function ( updateParents, updateChildren ) {
            Object3D.prototype.updateWorldMatrix.call( this, updateParents, updateChildren );
            this.matrixWorldInverse.getInverse( this.matrixWorld );
        },
        clone: function () {
            return new this.constructor().copy( this );
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author greggman / http://games.greggman.com/
     * @author zz85 / http://www.lab4games.net/zz85/blog
     * @author tschw
     */
    function PerspectiveCamera( fov, aspect, near, far ) {
        Camera.call( this );
        this.type = 'PerspectiveCamera';
        this.fov = fov !== undefined ? fov : 50;
        this.zoom = 1;
        this.near = near !== undefined ? near : 0.1;
        this.far = far !== undefined ? far : 2000;
        this.focus = 10;
        this.aspect = aspect !== undefined ? aspect : 1;
        this.view = null;
        this.filmGauge = 35;    // width of the film (default in millimeters)
        this.filmOffset = 0;    // horizontal film offset (same unit as gauge)
        this.updateProjectionMatrix();
    }
    PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
        constructor: PerspectiveCamera,
        isPerspectiveCamera: true,
        copy: function ( source, recursive ) {
            Camera.prototype.copy.call( this, source, recursive );
            this.fov = source.fov;
            this.zoom = source.zoom;
            this.near = source.near;
            this.far = source.far;
            this.focus = source.focus;
            this.aspect = source.aspect;
            this.view = source.view === null ? null : Object.assign( {}, source.view );
            this.filmGauge = source.filmGauge;
            this.filmOffset = source.filmOffset;
            return this;
        },
        /**
         * Sets the FOV by focal length in respect to the current .filmGauge.
         *
         * The default film gauge is 35, so that the focal length can be specified for
         * a 35mm (full frame) camera.
         *
         * Values for focal length and film gauge must have the same unit.
         */
        setFocalLength: function ( focalLength ) {
            // see http://www.bobatkins.com/photography/technical/field_of_view.html
            var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
            this.fov = MathUtils.RAD2DEG * 2 * Math.atan( vExtentSlope );
            this.updateProjectionMatrix();
        },
        /**
         * Calculates the focal length from the current .fov and .filmGauge.
         */
        getFocalLength: function () {
            var vExtentSlope = Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov );
            return 0.5 * this.getFilmHeight() / vExtentSlope;
        },
        getEffectiveFOV: function () {
            return MathUtils.RAD2DEG * 2 * Math.atan(
                Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom );
        },
        getFilmWidth: function () {
            // film not completely covered in portrait format (aspect < 1)
            return this.filmGauge * Math.min( this.aspect, 1 );
        },
        getFilmHeight: function () {
            // film not completely covered in landscape format (aspect > 1)
            return this.filmGauge / Math.max( this.aspect, 1 );
        },
        /**
         * Sets an offset in a larger frustum. This is useful for multi-window or
         * multi-monitor/multi-machine setups.
         *
         * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
         * the monitors are in grid like this
         *
         * +---+---+---+
         * | A | B | C |
         * +---+---+---+
         * | D | E | F |
         * +---+---+---+
         *
         * then for each monitor you would call it like this
         *
         * var w = 1920;
         * var h = 1080;
         * var fullWidth = w * 3;
         * var fullHeight = h * 2;
         *
         * --A--
         * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
         * --B--
         * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
         * --C--
         * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
         * --D--
         * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
         * --E--
         * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
         * --F--
         * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
         *
         * Note there is no reason monitors have to be the same size or in a grid.
         */
        setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {
            this.aspect = fullWidth / fullHeight;
            if ( this.view === null ) {
                this.view = {
                    enabled: true,
                    fullWidth: 1,
                    fullHeight: 1,
                    offsetX: 0,
                    offsetY: 0,
                    width: 1,
                    height: 1
                };
            }
            this.view.enabled = true;
            this.view.fullWidth = fullWidth;
            this.view.fullHeight = fullHeight;
            this.view.offsetX = x;
            this.view.offsetY = y;
            this.view.width = width;
            this.view.height = height;
            this.updateProjectionMatrix();
        },
        clearViewOffset: function () {
            if ( this.view !== null ) {
                this.view.enabled = false;
            }
            this.updateProjectionMatrix();
        },
        updateProjectionMatrix: function () {
            var near = this.near,
                top = near * Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom,
                height = 2 * top,
                width = this.aspect * height,
                left = - 0.5 * width,
                view = this.view;
            if ( this.view !== null && this.view.enabled ) {
                var fullWidth = view.fullWidth,
                    fullHeight = view.fullHeight;
                left += view.offsetX * width / fullWidth;
                top -= view.offsetY * height / fullHeight;
                width *= view.width / fullWidth;
                height *= view.height / fullHeight;
            }
            var skew = this.filmOffset;
            if ( skew !== 0 ) { left += near * skew / this.getFilmWidth(); }
            this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
            this.projectionMatrixInverse.getInverse( this.projectionMatrix );
        },
        toJSON: function ( meta ) {
            var data = Object3D.prototype.toJSON.call( this, meta );
            data.object.fov = this.fov;
            data.object.zoom = this.zoom;
            data.object.near = this.near;
            data.object.far = this.far;
            data.object.focus = this.focus;
            data.object.aspect = this.aspect;
            if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); }
            data.object.filmGauge = this.filmGauge;
            data.object.filmOffset = this.filmOffset;
            return data;
        }
    } );
    /**
     * Camera for rendering cube maps
     *    - renders scene into axis-aligned cube
     *
     * @author alteredq / http://alteredqualia.com/
     */
    var fov = 90, aspect = 1;
    function CubeCamera( near, far, cubeResolution, options ) {
        Object3D.call( this );
        this.type = 'CubeCamera';
        var cameraPX = new PerspectiveCamera( fov, aspect, near, far );
        cameraPX.up.set( 0, - 1, 0 );
        cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
        this.add( cameraPX );
        var cameraNX = new PerspectiveCamera( fov, aspect, near, far );
        cameraNX.up.set( 0, - 1, 0 );
        cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
        this.add( cameraNX );
        var cameraPY = new PerspectiveCamera( fov, aspect, near, far );
        cameraPY.up.set( 0, 0, 1 );
        cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
        this.add( cameraPY );
        var cameraNY = new PerspectiveCamera( fov, aspect, near, far );
        cameraNY.up.set( 0, 0, - 1 );
        cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
        this.add( cameraNY );
        var cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
        cameraPZ.up.set( 0, - 1, 0 );
        cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
        this.add( cameraPZ );
        var cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
        cameraNZ.up.set( 0, - 1, 0 );
        cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
        this.add( cameraNZ );
        options = options || { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter };
        this.renderTarget = new WebGLCubeRenderTarget( cubeResolution, options );
        this.renderTarget.texture.name = "CubeCamera";
        this.update = function ( renderer, scene ) {
            if ( this.parent === null ) { this.updateMatrixWorld(); }
            var currentRenderTarget = renderer.getRenderTarget();
            var renderTarget = this.renderTarget;
            var generateMipmaps = renderTarget.texture.generateMipmaps;
            renderTarget.texture.generateMipmaps = false;
            renderer.setRenderTarget( renderTarget, 0 );
            renderer.render( scene, cameraPX );
            renderer.setRenderTarget( renderTarget, 1 );
            renderer.render( scene, cameraNX );
            renderer.setRenderTarget( renderTarget, 2 );
            renderer.render( scene, cameraPY );
            renderer.setRenderTarget( renderTarget, 3 );
            renderer.render( scene, cameraNY );
            renderer.setRenderTarget( renderTarget, 4 );
            renderer.render( scene, cameraPZ );
            renderTarget.texture.generateMipmaps = generateMipmaps;
            renderer.setRenderTarget( renderTarget, 5 );
            renderer.render( scene, cameraNZ );
            renderer.setRenderTarget( currentRenderTarget );
        };
        this.clear = function ( renderer, color, depth, stencil ) {
            var currentRenderTarget = renderer.getRenderTarget();
            var renderTarget = this.renderTarget;
            for ( var i = 0; i < 6; i ++ ) {
                renderer.setRenderTarget( renderTarget, i );
                renderer.clear( color, depth, stencil );
            }
            renderer.setRenderTarget( currentRenderTarget );
        };
    }
    CubeCamera.prototype = Object.create( Object3D.prototype );
    CubeCamera.prototype.constructor = CubeCamera;
    /**
     * @author alteredq / http://alteredqualia.com
     * @author WestLangley / http://github.com/WestLangley
     */
    function WebGLCubeRenderTarget( size, options, dummy ) {
        if ( Number.isInteger( options ) ) {
            console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' );
            options = dummy;
        }
        WebGLRenderTarget.call( this, size, size, options );
    }
    WebGLCubeRenderTarget.prototype = Object.create( WebGLRenderTarget.prototype );
    WebGLCubeRenderTarget.prototype.constructor = WebGLCubeRenderTarget;
    WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
    WebGLCubeRenderTarget.prototype.fromEquirectangularTexture = function ( renderer, texture ) {
        this.texture.type = texture.type;
        this.texture.format = texture.format;
        this.texture.encoding = texture.encoding;
        var scene = new Scene();
        var shader = {
            uniforms: {
                tEquirect: { value: null },
            },
            vertexShader: [
                "varying vec3 vWorldDirection;",
                "vec3 transformDirection( in vec3 dir, in mat4 matrix ) {",
                "    return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );",
                "}",
                "void main() {",
                "    vWorldDirection = transformDirection( position, modelMatrix );",
                "    #include ",
                "    #include ",
                "}"
            ].join( '\n' ),
            fragmentShader: [
                "uniform sampler2D tEquirect;",
                "varying vec3 vWorldDirection;",
                "#define RECIPROCAL_PI 0.31830988618",
                "#define RECIPROCAL_PI2 0.15915494",
                "void main() {",
                "    vec3 direction = normalize( vWorldDirection );",
                "    vec2 sampleUV;",
                "    sampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;",
                "    sampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;",
                "    gl_FragColor = texture2D( tEquirect, sampleUV );",
                "}"
            ].join( '\n' ),
        };
        var material = new ShaderMaterial( {
            type: 'CubemapFromEquirect',
            uniforms: cloneUniforms( shader.uniforms ),
            vertexShader: shader.vertexShader,
            fragmentShader: shader.fragmentShader,
            side: BackSide,
            blending: NoBlending
        } );
        material.uniforms.tEquirect.value = texture;
        var mesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), material );
        scene.add( mesh );
        var camera = new CubeCamera( 1, 10, 1 );
        camera.renderTarget = this;
        camera.renderTarget.texture.name = 'CubeCameraTexture';
        camera.update( renderer, scene );
        mesh.geometry.dispose();
        mesh.material.dispose();
        return this;
    };
    /**
     * @author alteredq / http://alteredqualia.com/
     */
    function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
        Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
        this.image = { data: data || null, width: width || 1, height: height || 1 };
        this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
        this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
        this.generateMipmaps = false;
        this.flipY = false;
        this.unpackAlignment = 1;
        this.needsUpdate = true;
    }
    DataTexture.prototype = Object.create( Texture.prototype );
    DataTexture.prototype.constructor = DataTexture;
    DataTexture.prototype.isDataTexture = true;
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     * @author bhouston / http://clara.io
     */
    var _sphere$1 = new Sphere();
    var _vector$5 = new Vector3();
    function Frustum( p0, p1, p2, p3, p4, p5 ) {
        this.planes = [
            ( p0 !== undefined ) ? p0 : new Plane(),
            ( p1 !== undefined ) ? p1 : new Plane(),
            ( p2 !== undefined ) ? p2 : new Plane(),
            ( p3 !== undefined ) ? p3 : new Plane(),
            ( p4 !== undefined ) ? p4 : new Plane(),
            ( p5 !== undefined ) ? p5 : new Plane()
        ];
    }
    Object.assign( Frustum.prototype, {
        set: function ( p0, p1, p2, p3, p4, p5 ) {
            var planes = this.planes;
            planes[ 0 ].copy( p0 );
            planes[ 1 ].copy( p1 );
            planes[ 2 ].copy( p2 );
            planes[ 3 ].copy( p3 );
            planes[ 4 ].copy( p4 );
            planes[ 5 ].copy( p5 );
            return this;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( frustum ) {
            var planes = this.planes;
            for ( var i = 0; i < 6; i ++ ) {
                planes[ i ].copy( frustum.planes[ i ] );
            }
            return this;
        },
        setFromProjectionMatrix: function ( m ) {
            var planes = this.planes;
            var me = m.elements;
            var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
            var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
            var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
            var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
            planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
            planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
            planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
            planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
            planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
            planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
            return this;
        },
        intersectsObject: function ( object ) {
            var geometry = object.geometry;
            if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }
            _sphere$1.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );
            return this.intersectsSphere( _sphere$1 );
        },
        intersectsSprite: function ( sprite ) {
            _sphere$1.center.set( 0, 0, 0 );
            _sphere$1.radius = 0.7071067811865476;
            _sphere$1.applyMatrix4( sprite.matrixWorld );
            return this.intersectsSphere( _sphere$1 );
        },
        intersectsSphere: function ( sphere ) {
            var planes = this.planes;
            var center = sphere.center;
            var negRadius = - sphere.radius;
            for ( var i = 0; i < 6; i ++ ) {
                var distance = planes[ i ].distanceToPoint( center );
                if ( distance < negRadius ) {
                    return false;
                }
            }
            return true;
        },
        intersectsBox: function ( box ) {
            var planes = this.planes;
            for ( var i = 0; i < 6; i ++ ) {
                var plane = planes[ i ];
                // corner at max distance
                _vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x;
                _vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y;
                _vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z;
                if ( plane.distanceToPoint( _vector$5 ) < 0 ) {
                    return false;
                }
            }
            return true;
        },
        containsPoint: function ( point ) {
            var planes = this.planes;
            for ( var i = 0; i < 6; i ++ ) {
                if ( planes[ i ].distanceToPoint( point ) < 0 ) {
                    return false;
                }
            }
            return true;
        }
    } );
    /**
     * Uniforms library for shared webgl shaders
     */
    var UniformsLib = {
        common: {
            diffuse: { value: new Color( 0xeeeeee ) },
            opacity: { value: 1.0 },
            map: { value: null },
            uvTransform: { value: new Matrix3() },
            uv2Transform: { value: new Matrix3() },
            alphaMap: { value: null },
        },
        specularmap: {
            specularMap: { value: null },
        },
        envmap: {
            envMap: { value: null },
            flipEnvMap: { value: - 1 },
            reflectivity: { value: 1.0 },
            refractionRatio: { value: 0.98 },
            maxMipLevel: { value: 0 }
        },
        aomap: {
            aoMap: { value: null },
            aoMapIntensity: { value: 1 }
        },
        lightmap: {
            lightMap: { value: null },
            lightMapIntensity: { value: 1 }
        },
        emissivemap: {
            emissiveMap: { value: null }
        },
        bumpmap: {
            bumpMap: { value: null },
            bumpScale: { value: 1 }
        },
        normalmap: {
            normalMap: { value: null },
            normalScale: { value: new Vector2( 1, 1 ) }
        },
        displacementmap: {
            displacementMap: { value: null },
            displacementScale: { value: 1 },
            displacementBias: { value: 0 }
        },
        roughnessmap: {
            roughnessMap: { value: null }
        },
        metalnessmap: {
            metalnessMap: { value: null }
        },
        gradientmap: {
            gradientMap: { value: null }
        },
        fog: {
            fogDensity: { value: 0.00025 },
            fogNear: { value: 1 },
            fogFar: { value: 2000 },
            fogColor: { value: new Color( 0xffffff ) }
        },
        lights: {
            ambientLightColor: { value: [] },
            lightProbe: { value: [] },
            directionalLights: { value: [], properties: {
                direction: {},
                color: {}
            } },
            directionalLightShadows: { value: [], properties: {
                shadowBias: {},
                shadowRadius: {},
                shadowMapSize: {}
            } },
            directionalShadowMap: { value: [] },
            directionalShadowMatrix: { value: [] },
            spotLights: { value: [], properties: {
                color: {},
                position: {},
                direction: {},
                distance: {},
                coneCos: {},
                penumbraCos: {},
                decay: {}
            } },
            spotLightShadows: { value: [], properties: {
                shadowBias: {},
                shadowRadius: {},
                shadowMapSize: {}
            } },
            spotShadowMap: { value: [] },
            spotShadowMatrix: { value: [] },
            pointLights: { value: [], properties: {
                color: {},
                position: {},
                decay: {},
                distance: {}
            } },
            pointLightShadows: { value: [], properties: {
                shadowBias: {},
                shadowRadius: {},
                shadowMapSize: {},
                shadowCameraNear: {},
                shadowCameraFar: {}
            } },
            pointShadowMap: { value: [] },
            pointShadowMatrix: { value: [] },
            hemisphereLights: { value: [], properties: {
                direction: {},
                skyColor: {},
                groundColor: {}
            } },
            // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
            rectAreaLights: { value: [], properties: {
                color: {},
                position: {},
                width: {},
                height: {}
            } }
        },
        points: {
            diffuse: { value: new Color( 0xeeeeee ) },
            opacity: { value: 1.0 },
            size: { value: 1.0 },
            scale: { value: 1.0 },
            map: { value: null },
            alphaMap: { value: null },
            uvTransform: { value: new Matrix3() }
        },
        sprite: {
            diffuse: { value: new Color( 0xeeeeee ) },
            opacity: { value: 1.0 },
            center: { value: new Vector2( 0.5, 0.5 ) },
            rotation: { value: 0.0 },
            map: { value: null },
            alphaMap: { value: null },
            uvTransform: { value: new Matrix3() }
        }
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLAnimation() {
        var context = null;
        var isAnimating = false;
        var animationLoop = null;
        function onAnimationFrame( time, frame ) {
            if ( isAnimating === false ) { return; }
            animationLoop( time, frame );
            context.requestAnimationFrame( onAnimationFrame );
        }
        return {
            start: function () {
                if ( isAnimating === true ) { return; }
                if ( animationLoop === null ) { return; }
                context.requestAnimationFrame( onAnimationFrame );
                isAnimating = true;
            },
            stop: function () {
                isAnimating = false;
            },
            setAnimationLoop: function ( callback ) {
                animationLoop = callback;
            },
            setContext: function ( value ) {
                context = value;
            }
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLAttributes( gl, capabilities ) {
        var isWebGL2 = capabilities.isWebGL2;
        var buffers = new WeakMap();
        function createBuffer( attribute, bufferType ) {
            var array = attribute.array;
            var usage = attribute.usage;
            var buffer = gl.createBuffer();
            gl.bindBuffer( bufferType, buffer );
            gl.bufferData( bufferType, array, usage );
            attribute.onUploadCallback();
            var type = 5126;
            if ( array instanceof Float32Array ) {
                type = 5126;
            } else if ( array instanceof Float64Array ) {
                console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );
            } else if ( array instanceof Uint16Array ) {
                type = 5123;
            } else if ( array instanceof Int16Array ) {
                type = 5122;
            } else if ( array instanceof Uint32Array ) {
                type = 5125;
            } else if ( array instanceof Int32Array ) {
                type = 5124;
            } else if ( array instanceof Int8Array ) {
                type = 5120;
            } else if ( array instanceof Uint8Array ) {
                type = 5121;
            }
            return {
                buffer: buffer,
                type: type,
                bytesPerElement: array.BYTES_PER_ELEMENT,
                version: attribute.version
            };
        }
        function updateBuffer( buffer, attribute, bufferType ) {
            var array = attribute.array;
            var updateRange = attribute.updateRange;
            gl.bindBuffer( bufferType, buffer );
            if ( updateRange.count === - 1 ) {
                // Not using update ranges
                gl.bufferSubData( bufferType, 0, array );
            } else {
                if ( isWebGL2 ) {
                    gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
                        array, updateRange.offset, updateRange.count );
                } else {
                    gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
                        array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );
                }
                updateRange.count = - 1; // reset range
            }
        }
        //
        function get( attribute ) {
            if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; }
            return buffers.get( attribute );
        }
        function remove( attribute ) {
            if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; }
            var data = buffers.get( attribute );
            if ( data ) {
                gl.deleteBuffer( data.buffer );
                buffers.delete( attribute );
            }
        }
        function update( attribute, bufferType ) {
            if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; }
            var data = buffers.get( attribute );
            if ( data === undefined ) {
                buffers.set( attribute, createBuffer( attribute, bufferType ) );
            } else if ( data.version < attribute.version ) {
                updateBuffer( data.buffer, attribute, bufferType );
                data.version = attribute.version;
            }
        }
        return {
            get: get,
            remove: remove,
            update: update
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author Mugen87 / https://github.com/Mugen87
     */
    // PlaneGeometry
    function PlaneGeometry( width, height, widthSegments, heightSegments ) {
        Geometry.call( this );
        this.type = 'PlaneGeometry';
        this.parameters = {
            width: width,
            height: height,
            widthSegments: widthSegments,
            heightSegments: heightSegments
        };
        this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
        this.mergeVertices();
    }
    PlaneGeometry.prototype = Object.create( Geometry.prototype );
    PlaneGeometry.prototype.constructor = PlaneGeometry;
    // PlaneBufferGeometry
    function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {
        BufferGeometry.call( this );
        this.type = 'PlaneBufferGeometry';
        this.parameters = {
            width: width,
            height: height,
            widthSegments: widthSegments,
            heightSegments: heightSegments
        };
        width = width || 1;
        height = height || 1;
        var width_half = width / 2;
        var height_half = height / 2;
        var gridX = Math.floor( widthSegments ) || 1;
        var gridY = Math.floor( heightSegments ) || 1;
        var gridX1 = gridX + 1;
        var gridY1 = gridY + 1;
        var segment_width = width / gridX;
        var segment_height = height / gridY;
        var ix, iy;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // generate vertices, normals and uvs
        for ( iy = 0; iy < gridY1; iy ++ ) {
            var y = iy * segment_height - height_half;
            for ( ix = 0; ix < gridX1; ix ++ ) {
                var x = ix * segment_width - width_half;
                vertices.push( x, - y, 0 );
                normals.push( 0, 0, 1 );
                uvs.push( ix / gridX );
                uvs.push( 1 - ( iy / gridY ) );
            }
        }
        // indices
        for ( iy = 0; iy < gridY; iy ++ ) {
            for ( ix = 0; ix < gridX; ix ++ ) {
                var a = ix + gridX1 * iy;
                var b = ix + gridX1 * ( iy + 1 );
                var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
                var d = ( ix + 1 ) + gridX1 * iy;
                // faces
                indices.push( a, b, d );
                indices.push( b, c, d );
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    }
    PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;
    var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
    var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
    var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";
    var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";
    var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
    var begin_vertex = "vec3 transformed = vec3( position );";
    var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
    var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
    var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
    var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
    var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
    var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
    var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
    var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";
    var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";
    var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";
    var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";
    var common = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI_HALF 1.5707963267949\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n return m[ 2 ][ 3 ] == - 1.0;\n}";
    var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_maxMipLevel 8.0\n#define cubeUV_minMipLevel 4.0\n#define cubeUV_maxTileSize 256.0\n#define cubeUV_minTileSize 16.0\nfloat getFace(vec3 direction) {\n vec3 absDirection = abs(direction);\n float face = -1.0;\n if (absDirection.x > absDirection.z) {\n if (absDirection.x > absDirection.y)\n face = direction.x > 0.0 ? 0.0 : 3.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n } else {\n if (absDirection.z > absDirection.y)\n face = direction.z > 0.0 ? 2.0 : 5.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n }\n return face;\n}\nvec2 getUV(vec3 direction, float face) {\n vec2 uv;\n if (face == 0.0) {\n uv = vec2(-direction.z, direction.y) / abs(direction.x);\n } else if (face == 1.0) {\n uv = vec2(direction.x, -direction.z) / abs(direction.y);\n } else if (face == 2.0) {\n uv = direction.xy / abs(direction.z);\n } else if (face == 3.0) {\n uv = vec2(direction.z, direction.y) / abs(direction.x);\n } else if (face == 4.0) {\n uv = direction.xz / abs(direction.y);\n } else {\n uv = vec2(-direction.x, direction.y) / abs(direction.z);\n }\n return 0.5 * (uv + 1.0);\n}\nvec3 bilinearCubeUV(sampler2D envMap, vec3 direction, float mipInt) {\n float face = getFace(direction);\n float filterInt = max(cubeUV_minMipLevel - mipInt, 0.0);\n mipInt = max(mipInt, cubeUV_minMipLevel);\n float faceSize = exp2(mipInt);\n float texelSize = 1.0 / (3.0 * cubeUV_maxTileSize);\n vec2 uv = getUV(direction, face) * (faceSize - 1.0);\n vec2 f = fract(uv);\n uv += 0.5 - f;\n if (face > 2.0) {\n uv.y += faceSize;\n face -= 3.0;\n }\n uv.x += face * faceSize;\n if(mipInt < cubeUV_maxMipLevel){\n uv.y += 2.0 * cubeUV_maxTileSize;\n }\n uv.y += filterInt * 2.0 * cubeUV_minTileSize;\n uv.x += 3.0 * max(0.0, cubeUV_maxTileSize - 2.0 * faceSize);\n uv *= texelSize;\n vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.x += texelSize;\n vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.y += texelSize;\n vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.x -= texelSize;\n vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n vec3 tm = mix(tl, tr, f.x);\n vec3 bm = mix(bl, br, f.x);\n return mix(tm, bm, f.y);\n}\n#define r0 1.0\n#define v0 0.339\n#define m0 -2.0\n#define r1 0.8\n#define v1 0.276\n#define m1 -1.0\n#define r4 0.4\n#define v4 0.046\n#define m4 2.0\n#define r5 0.305\n#define v5 0.016\n#define m5 3.0\n#define r6 0.21\n#define v6 0.0038\n#define m6 4.0\nfloat roughnessToMip(float roughness) {\n float mip = 0.0;\n if (roughness >= r1) {\n mip = (r0 - roughness) * (m1 - m0) / (r0 - r1) + m0;\n } else if (roughness >= r4) {\n mip = (r1 - roughness) * (m4 - m1) / (r1 - r4) + m1;\n } else if (roughness >= r5) {\n mip = (r4 - roughness) * (m5 - m4) / (r4 - r5) + m4;\n } else if (roughness >= r6) {\n mip = (r5 - roughness) * (m6 - m5) / (r5 - r6) + m5;\n } else {\n mip = -2.0 * log2(1.16 * roughness); }\n return mip;\n}\nvec4 textureCubeUV(sampler2D envMap, vec3 sampleDir, float roughness) {\n float mip = clamp(roughnessToMip(roughness), m0, cubeUV_maxMipLevel);\n float mipF = fract(mip);\n float mipInt = floor(mip);\n vec3 color0 = bilinearCubeUV(envMap, sampleDir, mipInt);\n if (mipF == 0.0) {\n return vec4(color0, 1.0);\n } else {\n vec3 color1 = bilinearCubeUV(envMap, sampleDir, mipInt + 1.0);\n return vec4(mix(color0, color1, mipF), 1.0);\n }\n}\n#endif";
    var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
    var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
    var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
    var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
    var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
    var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
    var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
    var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\t\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\treflectVec = normalize( reflectVec );\n\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
    var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
    var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
    var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
    var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) { \n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
    var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = -mvPosition.z;\n#endif";
    var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";
    var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
    var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
    var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
    var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";
    var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
    var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
    var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";
    var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t vec3 reflectVec = reflect( -viewDir, normal );\n\t\t reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t vec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";
    var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
    var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
    var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
    var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
    var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";
    var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
    var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
    var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";
    var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
    var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
    var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
    var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
    var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
    var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
    var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
    var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
    var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
    var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
    var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
    var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
    var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
    var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
    var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
    var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif";
    var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif";
    var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
    var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif";
    var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
    var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
    var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
    var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
    var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
    var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
    var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
    var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
    var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
    var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
    var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
    var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
    var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
    var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
    var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
    var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
    var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
    var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
    var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
    var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( ( color * ( 2.51 * color + 0.03 ) ) / ( color * ( 2.43 * color + 0.59 ) + 0.14 ) );\n}";
    var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
    var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
    var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
    var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
    var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
    var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
    var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
    var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}";
    var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
    var cube_frag = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}";
    var cube_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}";
    var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
    var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}";
    var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
    var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}";
    var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV;\n\tsampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}";
    var equirect_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}";
    var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}";
    var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}";
    var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSPARENCY\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSPARENCY\n\tuniform float transparency;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSPARENCY\n\t\tdiffuseColor.a *= saturate( 1. - transparency + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}";
    var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
    var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
    var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var points_vert = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}";
    var shadow_vert = "#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
    var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n}";
    var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}";
    var ShaderChunk = {
        alphamap_fragment: alphamap_fragment,
        alphamap_pars_fragment: alphamap_pars_fragment,
        alphatest_fragment: alphatest_fragment,
        aomap_fragment: aomap_fragment,
        aomap_pars_fragment: aomap_pars_fragment,
        begin_vertex: begin_vertex,
        beginnormal_vertex: beginnormal_vertex,
        bsdfs: bsdfs,
        bumpmap_pars_fragment: bumpmap_pars_fragment,
        clipping_planes_fragment: clipping_planes_fragment,
        clipping_planes_pars_fragment: clipping_planes_pars_fragment,
        clipping_planes_pars_vertex: clipping_planes_pars_vertex,
        clipping_planes_vertex: clipping_planes_vertex,
        color_fragment: color_fragment,
        color_pars_fragment: color_pars_fragment,
        color_pars_vertex: color_pars_vertex,
        color_vertex: color_vertex,
        common: common,
        cube_uv_reflection_fragment: cube_uv_reflection_fragment,
        defaultnormal_vertex: defaultnormal_vertex,
        displacementmap_pars_vertex: displacementmap_pars_vertex,
        displacementmap_vertex: displacementmap_vertex,
        emissivemap_fragment: emissivemap_fragment,
        emissivemap_pars_fragment: emissivemap_pars_fragment,
        encodings_fragment: encodings_fragment,
        encodings_pars_fragment: encodings_pars_fragment,
        envmap_fragment: envmap_fragment,
        envmap_common_pars_fragment: envmap_common_pars_fragment,
        envmap_pars_fragment: envmap_pars_fragment,
        envmap_pars_vertex: envmap_pars_vertex,
        envmap_physical_pars_fragment: envmap_physical_pars_fragment,
        envmap_vertex: envmap_vertex,
        fog_vertex: fog_vertex,
        fog_pars_vertex: fog_pars_vertex,
        fog_fragment: fog_fragment,
        fog_pars_fragment: fog_pars_fragment,
        gradientmap_pars_fragment: gradientmap_pars_fragment,
        lightmap_fragment: lightmap_fragment,
        lightmap_pars_fragment: lightmap_pars_fragment,
        lights_lambert_vertex: lights_lambert_vertex,
        lights_pars_begin: lights_pars_begin,
        lights_toon_fragment: lights_toon_fragment,
        lights_toon_pars_fragment: lights_toon_pars_fragment,
        lights_phong_fragment: lights_phong_fragment,
        lights_phong_pars_fragment: lights_phong_pars_fragment,
        lights_physical_fragment: lights_physical_fragment,
        lights_physical_pars_fragment: lights_physical_pars_fragment,
        lights_fragment_begin: lights_fragment_begin,
        lights_fragment_maps: lights_fragment_maps,
        lights_fragment_end: lights_fragment_end,
        logdepthbuf_fragment: logdepthbuf_fragment,
        logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
        logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
        logdepthbuf_vertex: logdepthbuf_vertex,
        map_fragment: map_fragment,
        map_pars_fragment: map_pars_fragment,
        map_particle_fragment: map_particle_fragment,
        map_particle_pars_fragment: map_particle_pars_fragment,
        metalnessmap_fragment: metalnessmap_fragment,
        metalnessmap_pars_fragment: metalnessmap_pars_fragment,
        morphnormal_vertex: morphnormal_vertex,
        morphtarget_pars_vertex: morphtarget_pars_vertex,
        morphtarget_vertex: morphtarget_vertex,
        normal_fragment_begin: normal_fragment_begin,
        normal_fragment_maps: normal_fragment_maps,
        normalmap_pars_fragment: normalmap_pars_fragment,
        clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
        clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
        clearcoat_pars_fragment: clearcoat_pars_fragment,
        packing: packing,
        premultiplied_alpha_fragment: premultiplied_alpha_fragment,
        project_vertex: project_vertex,
        dithering_fragment: dithering_fragment,
        dithering_pars_fragment: dithering_pars_fragment,
        roughnessmap_fragment: roughnessmap_fragment,
        roughnessmap_pars_fragment: roughnessmap_pars_fragment,
        shadowmap_pars_fragment: shadowmap_pars_fragment,
        shadowmap_pars_vertex: shadowmap_pars_vertex,
        shadowmap_vertex: shadowmap_vertex,
        shadowmask_pars_fragment: shadowmask_pars_fragment,
        skinbase_vertex: skinbase_vertex,
        skinning_pars_vertex: skinning_pars_vertex,
        skinning_vertex: skinning_vertex,
        skinnormal_vertex: skinnormal_vertex,
        specularmap_fragment: specularmap_fragment,
        specularmap_pars_fragment: specularmap_pars_fragment,
        tonemapping_fragment: tonemapping_fragment,
        tonemapping_pars_fragment: tonemapping_pars_fragment,
        uv_pars_fragment: uv_pars_fragment,
        uv_pars_vertex: uv_pars_vertex,
        uv_vertex: uv_vertex,
        uv2_pars_fragment: uv2_pars_fragment,
        uv2_pars_vertex: uv2_pars_vertex,
        uv2_vertex: uv2_vertex,
        worldpos_vertex: worldpos_vertex,
        background_frag: background_frag,
        background_vert: background_vert,
        cube_frag: cube_frag,
        cube_vert: cube_vert,
        depth_frag: depth_frag,
        depth_vert: depth_vert,
        distanceRGBA_frag: distanceRGBA_frag,
        distanceRGBA_vert: distanceRGBA_vert,
        equirect_frag: equirect_frag,
        equirect_vert: equirect_vert,
        linedashed_frag: linedashed_frag,
        linedashed_vert: linedashed_vert,
        meshbasic_frag: meshbasic_frag,
        meshbasic_vert: meshbasic_vert,
        meshlambert_frag: meshlambert_frag,
        meshlambert_vert: meshlambert_vert,
        meshmatcap_frag: meshmatcap_frag,
        meshmatcap_vert: meshmatcap_vert,
        meshtoon_frag: meshtoon_frag,
        meshtoon_vert: meshtoon_vert,
        meshphong_frag: meshphong_frag,
        meshphong_vert: meshphong_vert,
        meshphysical_frag: meshphysical_frag,
        meshphysical_vert: meshphysical_vert,
        normal_frag: normal_frag,
        normal_vert: normal_vert,
        points_frag: points_frag,
        points_vert: points_vert,
        shadow_frag: shadow_frag,
        shadow_vert: shadow_vert,
        sprite_frag: sprite_frag,
        sprite_vert: sprite_vert
    };
    /**
     * @author alteredq / http://alteredqualia.com/
     * @author mrdoob / http://mrdoob.com/
     * @author mikael emtinger / http://gomo.se/
     */
    var ShaderLib = {
        basic: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.specularmap,
                UniformsLib.envmap,
                UniformsLib.aomap,
                UniformsLib.lightmap,
                UniformsLib.fog
            ] ),
            vertexShader: ShaderChunk.meshbasic_vert,
            fragmentShader: ShaderChunk.meshbasic_frag
        },
        lambert: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.specularmap,
                UniformsLib.envmap,
                UniformsLib.aomap,
                UniformsLib.lightmap,
                UniformsLib.emissivemap,
                UniformsLib.fog,
                UniformsLib.lights,
                {
                    emissive: { value: new Color( 0x000000 ) }
                }
            ] ),
            vertexShader: ShaderChunk.meshlambert_vert,
            fragmentShader: ShaderChunk.meshlambert_frag
        },
        phong: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.specularmap,
                UniformsLib.envmap,
                UniformsLib.aomap,
                UniformsLib.lightmap,
                UniformsLib.emissivemap,
                UniformsLib.bumpmap,
                UniformsLib.normalmap,
                UniformsLib.displacementmap,
                UniformsLib.fog,
                UniformsLib.lights,
                {
                    emissive: { value: new Color( 0x000000 ) },
                    specular: { value: new Color( 0x111111 ) },
                    shininess: { value: 30 }
                }
            ] ),
            vertexShader: ShaderChunk.meshphong_vert,
            fragmentShader: ShaderChunk.meshphong_frag
        },
        standard: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.envmap,
                UniformsLib.aomap,
                UniformsLib.lightmap,
                UniformsLib.emissivemap,
                UniformsLib.bumpmap,
                UniformsLib.normalmap,
                UniformsLib.displacementmap,
                UniformsLib.roughnessmap,
                UniformsLib.metalnessmap,
                UniformsLib.fog,
                UniformsLib.lights,
                {
                    emissive: { value: new Color( 0x000000 ) },
                    roughness: { value: 1.0 },
                    metalness: { value: 0.0 },
                    envMapIntensity: { value: 1 } // temporary
                }
            ] ),
            vertexShader: ShaderChunk.meshphysical_vert,
            fragmentShader: ShaderChunk.meshphysical_frag
        },
        toon: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.specularmap,
                UniformsLib.aomap,
                UniformsLib.lightmap,
                UniformsLib.emissivemap,
                UniformsLib.bumpmap,
                UniformsLib.normalmap,
                UniformsLib.displacementmap,
                UniformsLib.gradientmap,
                UniformsLib.fog,
                UniformsLib.lights,
                {
                    emissive: { value: new Color( 0x000000 ) },
                    specular: { value: new Color( 0x111111 ) },
                    shininess: { value: 30 }
                }
            ] ),
            vertexShader: ShaderChunk.meshtoon_vert,
            fragmentShader: ShaderChunk.meshtoon_frag
        },
        matcap: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.bumpmap,
                UniformsLib.normalmap,
                UniformsLib.displacementmap,
                UniformsLib.fog,
                {
                    matcap: { value: null }
                }
            ] ),
            vertexShader: ShaderChunk.meshmatcap_vert,
            fragmentShader: ShaderChunk.meshmatcap_frag
        },
        points: {
            uniforms: mergeUniforms( [
                UniformsLib.points,
                UniformsLib.fog
            ] ),
            vertexShader: ShaderChunk.points_vert,
            fragmentShader: ShaderChunk.points_frag
        },
        dashed: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.fog,
                {
                    scale: { value: 1 },
                    dashSize: { value: 1 },
                    totalSize: { value: 2 }
                }
            ] ),
            vertexShader: ShaderChunk.linedashed_vert,
            fragmentShader: ShaderChunk.linedashed_frag
        },
        depth: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.displacementmap
            ] ),
            vertexShader: ShaderChunk.depth_vert,
            fragmentShader: ShaderChunk.depth_frag
        },
        normal: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.bumpmap,
                UniformsLib.normalmap,
                UniformsLib.displacementmap,
                {
                    opacity: { value: 1.0 }
                }
            ] ),
            vertexShader: ShaderChunk.normal_vert,
            fragmentShader: ShaderChunk.normal_frag
        },
        sprite: {
            uniforms: mergeUniforms( [
                UniformsLib.sprite,
                UniformsLib.fog
            ] ),
            vertexShader: ShaderChunk.sprite_vert,
            fragmentShader: ShaderChunk.sprite_frag
        },
        background: {
            uniforms: {
                uvTransform: { value: new Matrix3() },
                t2D: { value: null },
            },
            vertexShader: ShaderChunk.background_vert,
            fragmentShader: ShaderChunk.background_frag
        },
        /* -------------------------------------------------------------------------
        //    Cube map shader
         ------------------------------------------------------------------------- */
        cube: {
            uniforms: mergeUniforms( [
                UniformsLib.envmap,
                {
                    opacity: { value: 1.0 }
                }
            ] ),
            vertexShader: ShaderChunk.cube_vert,
            fragmentShader: ShaderChunk.cube_frag
        },
        equirect: {
            uniforms: {
                tEquirect: { value: null },
            },
            vertexShader: ShaderChunk.equirect_vert,
            fragmentShader: ShaderChunk.equirect_frag
        },
        distanceRGBA: {
            uniforms: mergeUniforms( [
                UniformsLib.common,
                UniformsLib.displacementmap,
                {
                    referencePosition: { value: new Vector3() },
                    nearDistance: { value: 1 },
                    farDistance: { value: 1000 }
                }
            ] ),
            vertexShader: ShaderChunk.distanceRGBA_vert,
            fragmentShader: ShaderChunk.distanceRGBA_frag
        },
        shadow: {
            uniforms: mergeUniforms( [
                UniformsLib.lights,
                UniformsLib.fog,
                {
                    color: { value: new Color( 0x00000 ) },
                    opacity: { value: 1.0 }
                } ] ),
            vertexShader: ShaderChunk.shadow_vert,
            fragmentShader: ShaderChunk.shadow_frag
        }
    };
    ShaderLib.physical = {
        uniforms: mergeUniforms( [
            ShaderLib.standard.uniforms,
            {
                clearcoat: { value: 0 },
                clearcoatMap: { value: null },
                clearcoatRoughness: { value: 0 },
                clearcoatRoughnessMap: { value: null },
                clearcoatNormalScale: { value: new Vector2( 1, 1 ) },
                clearcoatNormalMap: { value: null },
                sheen: { value: new Color( 0x000000 ) },
                transparency: { value: 0 },
            }
        ] ),
        vertexShader: ShaderChunk.meshphysical_vert,
        fragmentShader: ShaderChunk.meshphysical_frag
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {
        var clearColor = new Color( 0x000000 );
        var clearAlpha = 0;
        var planeMesh;
        var boxMesh;
        var currentBackground = null;
        var currentBackgroundVersion = 0;
        var currentTonemapping = null;
        function render( renderList, scene, camera, forceClear ) {
            var background = scene.background;
            // Ignore background in AR
            // TODO: Reconsider this.
            var xr = renderer.xr;
            var session = xr.getSession && xr.getSession();
            if ( session && session.environmentBlendMode === 'additive' ) {
                background = null;
            }
            if ( background === null ) {
                setClear( clearColor, clearAlpha );
            } else if ( background && background.isColor ) {
                setClear( background, 1 );
                forceClear = true;
            }
            if ( renderer.autoClear || forceClear ) {
                renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );
            }
            if ( background && ( background.isCubeTexture || background.isWebGLCubeRenderTarget || background.mapping === CubeUVReflectionMapping ) ) {
                if ( boxMesh === undefined ) {
                    boxMesh = new Mesh(
                        new BoxBufferGeometry( 1, 1, 1 ),
                        new ShaderMaterial( {
                            type: 'BackgroundCubeMaterial',
                            uniforms: cloneUniforms( ShaderLib.cube.uniforms ),
                            vertexShader: ShaderLib.cube.vertexShader,
                            fragmentShader: ShaderLib.cube.fragmentShader,
                            side: BackSide,
                            depthTest: false,
                            depthWrite: false,
                            fog: false
                        } )
                    );
                    boxMesh.geometry.deleteAttribute( 'normal' );
                    boxMesh.geometry.deleteAttribute( 'uv' );
                    boxMesh.onBeforeRender = function ( renderer, scene, camera ) {
                        this.matrixWorld.copyPosition( camera.matrixWorld );
                    };
                    // enable code injection for non-built-in material
                    Object.defineProperty( boxMesh.material, 'envMap', {
                        get: function () {
                            return this.uniforms.envMap.value;
                        }
                    } );
                    objects.update( boxMesh );
                }
                var texture = background.isWebGLCubeRenderTarget ? background.texture : background;
                boxMesh.material.uniforms.envMap.value = texture;
                boxMesh.material.uniforms.flipEnvMap.value = texture.isCubeTexture ? - 1 : 1;
                if ( currentBackground !== background ||
                    currentBackgroundVersion !== texture.version ||
                    currentTonemapping !== renderer.toneMapping ) {
                    boxMesh.material.needsUpdate = true;
                    currentBackground = background;
                    currentBackgroundVersion = texture.version;
                    currentTonemapping = renderer.toneMapping;
                }
                // push to the pre-sorted opaque render list
                renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null );
            } else if ( background && background.isTexture ) {
                if ( planeMesh === undefined ) {
                    planeMesh = new Mesh(
                        new PlaneBufferGeometry( 2, 2 ),
                        new ShaderMaterial( {
                            type: 'BackgroundMaterial',
                            uniforms: cloneUniforms( ShaderLib.background.uniforms ),
                            vertexShader: ShaderLib.background.vertexShader,
                            fragmentShader: ShaderLib.background.fragmentShader,
                            side: FrontSide,
                            depthTest: false,
                            depthWrite: false,
                            fog: false
                        } )
                    );
                    planeMesh.geometry.deleteAttribute( 'normal' );
                    // enable code injection for non-built-in material
                    Object.defineProperty( planeMesh.material, 'map', {
                        get: function () {
                            return this.uniforms.t2D.value;
                        }
                    } );
                    objects.update( planeMesh );
                }
                planeMesh.material.uniforms.t2D.value = background;
                if ( background.matrixAutoUpdate === true ) {
                    background.updateMatrix();
                }
                planeMesh.material.uniforms.uvTransform.value.copy( background.matrix );
                if ( currentBackground !== background ||
                    currentBackgroundVersion !== background.version ||
                    currentTonemapping !== renderer.toneMapping ) {
                    planeMesh.material.needsUpdate = true;
                    currentBackground = background;
                    currentBackgroundVersion = background.version;
                    currentTonemapping = renderer.toneMapping;
                }
                // push to the pre-sorted opaque render list
                renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null );
            }
        }
        function setClear( color, alpha ) {
            state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );
        }
        return {
            getClearColor: function () {
                return clearColor;
            },
            setClearColor: function ( color, alpha ) {
                clearColor.set( color );
                clearAlpha = alpha !== undefined ? alpha : 1;
                setClear( clearColor, clearAlpha );
            },
            getClearAlpha: function () {
                return clearAlpha;
            },
            setClearAlpha: function ( alpha ) {
                clearAlpha = alpha;
                setClear( clearColor, clearAlpha );
            },
            render: render
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLBufferRenderer( gl, extensions, info, capabilities ) {
        var isWebGL2 = capabilities.isWebGL2;
        var mode;
        function setMode( value ) {
            mode = value;
        }
        function render( start, count ) {
            gl.drawArrays( mode, start, count );
            info.update( count, mode );
        }
        function renderInstances( geometry, start, count, primcount ) {
            if ( primcount === 0 ) { return; }
            var extension, methodName;
            if ( isWebGL2 ) {
                extension = gl;
                methodName = 'drawArraysInstanced';
            } else {
                extension = extensions.get( 'ANGLE_instanced_arrays' );
                methodName = 'drawArraysInstancedANGLE';
                if ( extension === null ) {
                    console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
                    return;
                }
            }
            extension[ methodName ]( mode, start, count, primcount );
            info.update( count, mode, primcount );
        }
        //
        this.setMode = setMode;
        this.render = render;
        this.renderInstances = renderInstances;
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLCapabilities( gl, extensions, parameters ) {
        var maxAnisotropy;
        function getMaxAnisotropy() {
            if ( maxAnisotropy !== undefined ) { return maxAnisotropy; }
            var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
            if ( extension !== null ) {
                maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
            } else {
                maxAnisotropy = 0;
            }
            return maxAnisotropy;
        }
        function getMaxPrecision( precision ) {
            if ( precision === 'highp' ) {
                if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 &&
                    gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) {
                    return 'highp';
                }
                precision = 'mediump';
            }
            if ( precision === 'mediump' ) {
                if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 &&
                    gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) {
                    return 'mediump';
                }
            }
            return 'lowp';
        }
        /* eslint-disable no-undef */
        var isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) ||
            ( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext );
        /* eslint-enable no-undef */
        var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
        var maxPrecision = getMaxPrecision( precision );
        if ( maxPrecision !== precision ) {
            console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
            precision = maxPrecision;
        }
        var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
        var maxTextures = gl.getParameter( 34930 );
        var maxVertexTextures = gl.getParameter( 35660 );
        var maxTextureSize = gl.getParameter( 3379 );
        var maxCubemapSize = gl.getParameter( 34076 );
        var maxAttributes = gl.getParameter( 34921 );
        var maxVertexUniforms = gl.getParameter( 36347 );
        var maxVaryings = gl.getParameter( 36348 );
        var maxFragmentUniforms = gl.getParameter( 36349 );
        var vertexTextures = maxVertexTextures > 0;
        var floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' );
        var floatVertexTextures = vertexTextures && floatFragmentTextures;
        var maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0;
        return {
            isWebGL2: isWebGL2,
            getMaxAnisotropy: getMaxAnisotropy,
            getMaxPrecision: getMaxPrecision,
            precision: precision,
            logarithmicDepthBuffer: logarithmicDepthBuffer,
            maxTextures: maxTextures,
            maxVertexTextures: maxVertexTextures,
            maxTextureSize: maxTextureSize,
            maxCubemapSize: maxCubemapSize,
            maxAttributes: maxAttributes,
            maxVertexUniforms: maxVertexUniforms,
            maxVaryings: maxVaryings,
            maxFragmentUniforms: maxFragmentUniforms,
            vertexTextures: vertexTextures,
            floatFragmentTextures: floatFragmentTextures,
            floatVertexTextures: floatVertexTextures,
            maxSamples: maxSamples
        };
    }
    /**
     * @author tschw
     */
    function WebGLClipping() {
        var scope = this,
            globalState = null,
            numGlobalPlanes = 0,
            localClippingEnabled = false,
            renderingShadows = false,
            plane = new Plane(),
            viewNormalMatrix = new Matrix3(),
            uniform = { value: null, needsUpdate: false };
        this.uniform = uniform;
        this.numPlanes = 0;
        this.numIntersection = 0;
        this.init = function ( planes, enableLocalClipping, camera ) {
            var enabled =
                planes.length !== 0 ||
                enableLocalClipping ||
                // enable state of previous frame - the clipping code has to
                // run another frame in order to reset the state:
                numGlobalPlanes !== 0 ||
                localClippingEnabled;
            localClippingEnabled = enableLocalClipping;
            globalState = projectPlanes( planes, camera, 0 );
            numGlobalPlanes = planes.length;
            return enabled;
        };
        this.beginShadows = function () {
            renderingShadows = true;
            projectPlanes( null );
        };
        this.endShadows = function () {
            renderingShadows = false;
            resetGlobalState();
        };
        this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {
            if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) {
                // there's no local clipping
                if ( renderingShadows ) {
                    // there's no global clipping
                    projectPlanes( null );
                } else {
                    resetGlobalState();
                }
            } else {
                var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
                    lGlobal = nGlobal * 4,
                    dstArray = cache.clippingState || null;
                uniform.value = dstArray; // ensure unique state
                dstArray = projectPlanes( planes, camera, lGlobal, fromCache );
                for ( var i = 0; i !== lGlobal; ++ i ) {
                    dstArray[ i ] = globalState[ i ];
                }
                cache.clippingState = dstArray;
                this.numIntersection = clipIntersection ? this.numPlanes : 0;
                this.numPlanes += nGlobal;
            }
        };
        function resetGlobalState() {
            if ( uniform.value !== globalState ) {
                uniform.value = globalState;
                uniform.needsUpdate = numGlobalPlanes > 0;
            }
            scope.numPlanes = numGlobalPlanes;
            scope.numIntersection = 0;
        }
        function projectPlanes( planes, camera, dstOffset, skipTransform ) {
            var nPlanes = planes !== null ? planes.length : 0,
                dstArray = null;
            if ( nPlanes !== 0 ) {
                dstArray = uniform.value;
                if ( skipTransform !== true || dstArray === null ) {
                    var flatSize = dstOffset + nPlanes * 4,
                        viewMatrix = camera.matrixWorldInverse;
                    viewNormalMatrix.getNormalMatrix( viewMatrix );
                    if ( dstArray === null || dstArray.length < flatSize ) {
                        dstArray = new Float32Array( flatSize );
                    }
                    for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {
                        plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix );
                        plane.normal.toArray( dstArray, i4 );
                        dstArray[ i4 + 3 ] = plane.constant;
                    }
                }
                uniform.value = dstArray;
                uniform.needsUpdate = true;
            }
            scope.numPlanes = nPlanes;
            scope.numIntersection = 0;
            return dstArray;
        }
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLExtensions( gl ) {
        var extensions = {};
        return {
            get: function ( name ) {
                if ( extensions[ name ] !== undefined ) {
                    return extensions[ name ];
                }
                var extension;
                switch ( name ) {
                    case 'WEBGL_depth_texture':
                        extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
                        break;
                    case 'EXT_texture_filter_anisotropic':
                        extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
                        break;
                    case 'WEBGL_compressed_texture_s3tc':
                        extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
                        break;
                    case 'WEBGL_compressed_texture_pvrtc':
                        extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
                        break;
                    default:
                        extension = gl.getExtension( name );
                }
                if ( extension === null ) {
                    console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
                }
                extensions[ name ] = extension;
                return extension;
            }
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLGeometries( gl, attributes, info ) {
        var geometries = new WeakMap();
        var wireframeAttributes = new WeakMap();
        function onGeometryDispose( event ) {
            var geometry = event.target;
            var buffergeometry = geometries.get( geometry );
            if ( buffergeometry.index !== null ) {
                attributes.remove( buffergeometry.index );
            }
            for ( var name in buffergeometry.attributes ) {
                attributes.remove( buffergeometry.attributes[ name ] );
            }
            geometry.removeEventListener( 'dispose', onGeometryDispose );
            geometries.delete( geometry );
            var attribute = wireframeAttributes.get( buffergeometry );
            if ( attribute ) {
                attributes.remove( attribute );
                wireframeAttributes.delete( buffergeometry );
            }
            //
            info.memory.geometries --;
        }
        function get( object, geometry ) {
            var buffergeometry = geometries.get( geometry );
            if ( buffergeometry ) { return buffergeometry; }
            geometry.addEventListener( 'dispose', onGeometryDispose );
            if ( geometry.isBufferGeometry ) {
                buffergeometry = geometry;
            } else if ( geometry.isGeometry ) {
                if ( geometry._bufferGeometry === undefined ) {
                    geometry._bufferGeometry = new BufferGeometry().setFromObject( object );
                }
                buffergeometry = geometry._bufferGeometry;
            }
            geometries.set( geometry, buffergeometry );
            info.memory.geometries ++;
            return buffergeometry;
        }
        function update( geometry ) {
            var index = geometry.index;
            var geometryAttributes = geometry.attributes;
            if ( index !== null ) {
                attributes.update( index, 34963 );
            }
            for ( var name in geometryAttributes ) {
                attributes.update( geometryAttributes[ name ], 34962 );
            }
            // morph targets
            var morphAttributes = geometry.morphAttributes;
            for ( var name in morphAttributes ) {
                var array = morphAttributes[ name ];
                for ( var i = 0, l = array.length; i < l; i ++ ) {
                    attributes.update( array[ i ], 34962 );
                }
            }
        }
        function updateWireframeAttribute( geometry ) {
            var indices = [];
            var geometryIndex = geometry.index;
            var geometryPosition = geometry.attributes.position;
            var version = 0;
            if ( geometryIndex !== null ) {
                var array = geometryIndex.array;
                version = geometryIndex.version;
                for ( var i = 0, l = array.length; i < l; i += 3 ) {
                    var a = array[ i + 0 ];
                    var b = array[ i + 1 ];
                    var c = array[ i + 2 ];
                    indices.push( a, b, b, c, c, a );
                }
            } else {
                var array = geometryPosition.array;
                version = geometryPosition.version;
                for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {
                    var a = i + 0;
                    var b = i + 1;
                    var c = i + 2;
                    indices.push( a, b, b, c, c, a );
                }
            }
            var attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );
            attribute.version = version;
            attributes.update( attribute, 34963 );
            //
            var previousAttribute = wireframeAttributes.get( geometry );
            if ( previousAttribute ) { attributes.remove( previousAttribute ); }
            //
            wireframeAttributes.set( geometry, attribute );
        }
        function getWireframeAttribute( geometry ) {
            var currentAttribute = wireframeAttributes.get( geometry );
            if ( currentAttribute ) {
                var geometryIndex = geometry.index;
                if ( geometryIndex !== null ) {
                    // if the attribute is obsolete, create a new one
                    if ( currentAttribute.version < geometryIndex.version ) {
                        updateWireframeAttribute( geometry );
                    }
                }
            } else {
                updateWireframeAttribute( geometry );
            }
            return wireframeAttributes.get( geometry );
        }
        return {
            get: get,
            update: update,
            getWireframeAttribute: getWireframeAttribute
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) {
        var isWebGL2 = capabilities.isWebGL2;
        var mode;
        function setMode( value ) {
            mode = value;
        }
        var type, bytesPerElement;
        function setIndex( value ) {
            type = value.type;
            bytesPerElement = value.bytesPerElement;
        }
        function render( start, count ) {
            gl.drawElements( mode, count, type, start * bytesPerElement );
            info.update( count, mode );
        }
        function renderInstances( geometry, start, count, primcount ) {
            if ( primcount === 0 ) { return; }
            var extension, methodName;
            if ( isWebGL2 ) {
                extension = gl;
                methodName = 'drawElementsInstanced';
            } else {
                extension = extensions.get( 'ANGLE_instanced_arrays' );
                methodName = 'drawElementsInstancedANGLE';
                if ( extension === null ) {
                    console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
                    return;
                }
            }
            extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount );
            info.update( count, mode, primcount );
        }
        //
        this.setMode = setMode;
        this.setIndex = setIndex;
        this.render = render;
        this.renderInstances = renderInstances;
    }
    /**
     * @author Mugen87 / https://github.com/Mugen87
     */
    function WebGLInfo( gl ) {
        var memory = {
            geometries: 0,
            textures: 0
        };
        var render = {
            frame: 0,
            calls: 0,
            triangles: 0,
            points: 0,
            lines: 0
        };
        function update( count, mode, instanceCount ) {
            instanceCount = instanceCount || 1;
            render.calls ++;
            switch ( mode ) {
                case 4:
                    render.triangles += instanceCount * ( count / 3 );
                    break;
                case 1:
                    render.lines += instanceCount * ( count / 2 );
                    break;
                case 3:
                    render.lines += instanceCount * ( count - 1 );
                    break;
                case 2:
                    render.lines += instanceCount * count;
                    break;
                case 0:
                    render.points += instanceCount * count;
                    break;
                default:
                    console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode );
                    break;
            }
        }
        function reset() {
            render.frame ++;
            render.calls = 0;
            render.triangles = 0;
            render.points = 0;
            render.lines = 0;
        }
        return {
            memory: memory,
            render: render,
            programs: null,
            autoReset: true,
            reset: reset,
            update: update
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function absNumericalSort( a, b ) {
        return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] );
    }
    function WebGLMorphtargets( gl ) {
        var influencesList = {};
        var morphInfluences = new Float32Array( 8 );
        function update( object, geometry, material, program ) {
            var objectInfluences = object.morphTargetInfluences;
            // When object doesn't have morph target influences defined, we treat it as a 0-length array
            // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
            var length = objectInfluences === undefined ? 0 : objectInfluences.length;
            var influences = influencesList[ geometry.id ];
            if ( influences === undefined ) {
                // initialise list
                influences = [];
                for ( var i = 0; i < length; i ++ ) {
                    influences[ i ] = [ i, 0 ];
                }
                influencesList[ geometry.id ] = influences;
            }
            var morphTargets = material.morphTargets && geometry.morphAttributes.position;
            var morphNormals = material.morphNormals && geometry.morphAttributes.normal;
            // Remove current morphAttributes
            for ( var i = 0; i < length; i ++ ) {
                var influence = influences[ i ];
                if ( influence[ 1 ] !== 0 ) {
                    if ( morphTargets ) { geometry.deleteAttribute( 'morphTarget' + i ); }
                    if ( morphNormals ) { geometry.deleteAttribute( 'morphNormal' + i ); }
                }
            }
            // Collect influences
            for ( var i = 0; i < length; i ++ ) {
                var influence = influences[ i ];
                influence[ 0 ] = i;
                influence[ 1 ] = objectInfluences[ i ];
            }
            influences.sort( absNumericalSort );
            // Add morphAttributes
            var morphInfluencesSum = 0;
            for ( var i = 0; i < 8; i ++ ) {
                var influence = influences[ i ];
                if ( influence ) {
                    var index = influence[ 0 ];
                    var value = influence[ 1 ];
                    if ( value ) {
                        if ( morphTargets ) { geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] ); }
                        if ( morphNormals ) { geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] ); }
                        morphInfluences[ i ] = value;
                        morphInfluencesSum += value;
                        continue;
                    }
                }
                morphInfluences[ i ] = 0;
            }
            // GLSL shader uses formula baseinfluence * base + sum(target * influence)
            // This allows us to switch between absolute morphs and relative morphs without changing shader code
            // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
            var morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
            program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence );
            program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences );
        }
        return {
            update: update
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLObjects( gl, geometries, attributes, info ) {
        var updateMap = new WeakMap();
        function update( object ) {
            var frame = info.render.frame;
            var geometry = object.geometry;
            var buffergeometry = geometries.get( object, geometry );
            // Update once per frame
            if ( updateMap.get( buffergeometry ) !== frame ) {
                if ( geometry.isGeometry ) {
                    buffergeometry.updateFromObject( object );
                }
                geometries.update( buffergeometry );
                updateMap.set( buffergeometry, frame );
            }
            if ( object.isInstancedMesh ) {
                attributes.update( object.instanceMatrix, 34962 );
            }
            return buffergeometry;
        }
        function dispose() {
            updateMap = new WeakMap();
        }
        return {
            update: update,
            dispose: dispose
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
        images = images !== undefined ? images : [];
        mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
        format = format !== undefined ? format : RGBFormat;
        Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
        this.flipY = false;
    }
    CubeTexture.prototype = Object.create( Texture.prototype );
    CubeTexture.prototype.constructor = CubeTexture;
    CubeTexture.prototype.isCubeTexture = true;
    Object.defineProperty( CubeTexture.prototype, 'images', {
        get: function () {
            return this.image;
        },
        set: function ( value ) {
            this.image = value;
        }
    } );
    /**
     * @author Takahiro https://github.com/takahirox
     */
    function DataTexture2DArray( data, width, height, depth ) {
        Texture.call( this, null );
        this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };
        this.magFilter = NearestFilter;
        this.minFilter = NearestFilter;
        this.wrapR = ClampToEdgeWrapping;
        this.generateMipmaps = false;
        this.flipY = false;
        this.needsUpdate = true;
    }
    DataTexture2DArray.prototype = Object.create( Texture.prototype );
    DataTexture2DArray.prototype.constructor = DataTexture2DArray;
    DataTexture2DArray.prototype.isDataTexture2DArray = true;
    /**
     * @author Artur Trzesiok
     */
    function DataTexture3D( data, width, height, depth ) {
        // We're going to add .setXXX() methods for setting properties later.
        // Users can still set in DataTexture3D directly.
        //
        //    var texture = new THREE.DataTexture3D( data, width, height, depth );
        //     texture.anisotropy = 16;
        //
        // See #14839
        Texture.call( this, null );
        this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };
        this.magFilter = NearestFilter;
        this.minFilter = NearestFilter;
        this.wrapR = ClampToEdgeWrapping;
        this.generateMipmaps = false;
        this.flipY = false;
        this.needsUpdate = true;
    }
    DataTexture3D.prototype = Object.create( Texture.prototype );
    DataTexture3D.prototype.constructor = DataTexture3D;
    DataTexture3D.prototype.isDataTexture3D = true;
    /**
     * @author tschw
     * @author Mugen87 / https://github.com/Mugen87
     * @author mrdoob / http://mrdoob.com/
     *
     * Uniforms of a program.
     * Those form a tree structure with a special top-level container for the root,
     * which you get by calling 'new WebGLUniforms( gl, program )'.
     *
     *
     * Properties of inner nodes including the top-level container:
     *
     * .seq - array of nested uniforms
     * .map - nested uniforms by name
     *
     *
     * Methods of all nodes except the top-level container:
     *
     * .setValue( gl, value, [textures] )
     *
     *         uploads a uniform value(s)
     *     the 'textures' parameter is needed for sampler uniforms
     *
     *
     * Static methods of the top-level container (textures factorizations):
     *
     * .upload( gl, seq, values, textures )
     *
     *         sets uniforms in 'seq' to 'values[id].value'
     *
     * .seqWithValue( seq, values ) : filteredSeq
     *
     *         filters 'seq' entries with corresponding entry in values
     *
     *
     * Methods of the top-level container (textures factorizations):
     *
     * .setValue( gl, name, value, textures )
     *
     *         sets uniform with name 'name' to 'value'
     *
     * .setOptional( gl, obj, prop )
     *
     *         like .set for an optional property of the object
     *
     */
    var emptyTexture = new Texture();
    var emptyTexture2dArray = new DataTexture2DArray();
    var emptyTexture3d = new DataTexture3D();
    var emptyCubeTexture = new CubeTexture();
    // --- Utilities ---
    // Array Caches (provide typed arrays for temporary by size)
    var arrayCacheF32 = [];
    var arrayCacheI32 = [];
    // Float32Array caches used for uploading Matrix uniforms
    var mat4array = new Float32Array( 16 );
    var mat3array = new Float32Array( 9 );
    var mat2array = new Float32Array( 4 );
    // Flattening for arrays of vectors and matrices
    function flatten( array, nBlocks, blockSize ) {
        var firstElem = array[ 0 ];
        if ( firstElem <= 0 || firstElem > 0 ) { return array; }
        // unoptimized: ! isNaN( firstElem )
        // see http://jacksondunstan.com/articles/983
        var n = nBlocks * blockSize,
            r = arrayCacheF32[ n ];
        if ( r === undefined ) {
            r = new Float32Array( n );
            arrayCacheF32[ n ] = r;
        }
        if ( nBlocks !== 0 ) {
            firstElem.toArray( r, 0 );
            for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {
                offset += blockSize;
                array[ i ].toArray( r, offset );
            }
        }
        return r;
    }
    function arraysEqual( a, b ) {
        if ( a.length !== b.length ) { return false; }
        for ( var i = 0, l = a.length; i < l; i ++ ) {
            if ( a[ i ] !== b[ i ] ) { return false; }
        }
        return true;
    }
    function copyArray( a, b ) {
        for ( var i = 0, l = b.length; i < l; i ++ ) {
            a[ i ] = b[ i ];
        }
    }
    // Texture unit allocation
    function allocTexUnits( textures, n ) {
        var r = arrayCacheI32[ n ];
        if ( r === undefined ) {
            r = new Int32Array( n );
            arrayCacheI32[ n ] = r;
        }
        for ( var i = 0; i !== n; ++ i )
            { r[ i ] = textures.allocateTextureUnit(); }
        return r;
    }
    // --- Setters ---
    // Note: Defining these methods externally, because they come in a bunch
    // and this way their names minify.
    // Single scalar
    function setValueV1f( gl, v ) {
        var cache = this.cache;
        if ( cache[ 0 ] === v ) { return; }
        gl.uniform1f( this.addr, v );
        cache[ 0 ] = v;
    }
    // Single float vector (from flat array or THREE.VectorN)
    function setValueV2f( gl, v ) {
        var cache = this.cache;
        if ( v.x !== undefined ) {
            if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) {
                gl.uniform2f( this.addr, v.x, v.y );
                cache[ 0 ] = v.x;
                cache[ 1 ] = v.y;
            }
        } else {
            if ( arraysEqual( cache, v ) ) { return; }
            gl.uniform2fv( this.addr, v );
            copyArray( cache, v );
        }
    }
    function setValueV3f( gl, v ) {
        var cache = this.cache;
        if ( v.x !== undefined ) {
            if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) {
                gl.uniform3f( this.addr, v.x, v.y, v.z );
                cache[ 0 ] = v.x;
                cache[ 1 ] = v.y;
                cache[ 2 ] = v.z;
            }
        } else if ( v.r !== undefined ) {
            if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) {
                gl.uniform3f( this.addr, v.r, v.g, v.b );
                cache[ 0 ] = v.r;
                cache[ 1 ] = v.g;
                cache[ 2 ] = v.b;
            }
        } else {
            if ( arraysEqual( cache, v ) ) { return; }
            gl.uniform3fv( this.addr, v );
            copyArray( cache, v );
        }
    }
    function setValueV4f( gl, v ) {
        var cache = this.cache;
        if ( v.x !== undefined ) {
            if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) {
                gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
                cache[ 0 ] = v.x;
                cache[ 1 ] = v.y;
                cache[ 2 ] = v.z;
                cache[ 3 ] = v.w;
            }
        } else {
            if ( arraysEqual( cache, v ) ) { return; }
            gl.uniform4fv( this.addr, v );
            copyArray( cache, v );
        }
    }
    // Single matrix (from flat array or MatrixN)
    function setValueM2( gl, v ) {
        var cache = this.cache;
        var elements = v.elements;
        if ( elements === undefined ) {
            if ( arraysEqual( cache, v ) ) { return; }
            gl.uniformMatrix2fv( this.addr, false, v );
            copyArray( cache, v );
        } else {
            if ( arraysEqual( cache, elements ) ) { return; }
            mat2array.set( elements );
            gl.uniformMatrix2fv( this.addr, false, mat2array );
            copyArray( cache, elements );
        }
    }
    function setValueM3( gl, v ) {
        var cache = this.cache;
        var elements = v.elements;
        if ( elements === undefined ) {
            if ( arraysEqual( cache, v ) ) { return; }
            gl.uniformMatrix3fv( this.addr, false, v );
            copyArray( cache, v );
        } else {
            if ( arraysEqual( cache, elements ) ) { return; }
            mat3array.set( elements );
            gl.uniformMatrix3fv( this.addr, false, mat3array );
            copyArray( cache, elements );
        }
    }
    function setValueM4( gl, v ) {
        var cache = this.cache;
        var elements = v.elements;
        if ( elements === undefined ) {
            if ( arraysEqual( cache, v ) ) { return; }
            gl.uniformMatrix4fv( this.addr, false, v );
            copyArray( cache, v );
        } else {
            if ( arraysEqual( cache, elements ) ) { return; }
            mat4array.set( elements );
            gl.uniformMatrix4fv( this.addr, false, mat4array );
            copyArray( cache, elements );
        }
    }
    // Single texture (2D / Cube)
    function setValueT1( gl, v, textures ) {
        var cache = this.cache;
        var unit = textures.allocateTextureUnit();
        if ( cache[ 0 ] !== unit ) {
            gl.uniform1i( this.addr, unit );
            cache[ 0 ] = unit;
        }
        textures.safeSetTexture2D( v || emptyTexture, unit );
    }
    function setValueT2DArray1( gl, v, textures ) {
        var cache = this.cache;
        var unit = textures.allocateTextureUnit();
        if ( cache[ 0 ] !== unit ) {
            gl.uniform1i( this.addr, unit );
            cache[ 0 ] = unit;
        }
        textures.setTexture2DArray( v || emptyTexture2dArray, unit );
    }
    function setValueT3D1( gl, v, textures ) {
        var cache = this.cache;
        var unit = textures.allocateTextureUnit();
        if ( cache[ 0 ] !== unit ) {
            gl.uniform1i( this.addr, unit );
            cache[ 0 ] = unit;
        }
        textures.setTexture3D( v || emptyTexture3d, unit );
    }
    function setValueT6( gl, v, textures ) {
        var cache = this.cache;
        var unit = textures.allocateTextureUnit();
        if ( cache[ 0 ] !== unit ) {
            gl.uniform1i( this.addr, unit );
            cache[ 0 ] = unit;
        }
        textures.safeSetTextureCube( v || emptyCubeTexture, unit );
    }
    // Integer / Boolean vectors or arrays thereof (always flat arrays)
    function setValueV1i( gl, v ) {
        var cache = this.cache;
        if ( cache[ 0 ] === v ) { return; }
        gl.uniform1i( this.addr, v );
        cache[ 0 ] = v;
    }
    function setValueV2i( gl, v ) {
        var cache = this.cache;
        if ( arraysEqual( cache, v ) ) { return; }
        gl.uniform2iv( this.addr, v );
        copyArray( cache, v );
    }
    function setValueV3i( gl, v ) {
        var cache = this.cache;
        if ( arraysEqual( cache, v ) ) { return; }
        gl.uniform3iv( this.addr, v );
        copyArray( cache, v );
    }
    function setValueV4i( gl, v ) {
        var cache = this.cache;
        if ( arraysEqual( cache, v ) ) { return; }
        gl.uniform4iv( this.addr, v );
        copyArray( cache, v );
    }
    // uint
    function setValueV1ui( gl, v ) {
        var cache = this.cache;
        if ( cache[ 0 ] === v ) { return; }
        gl.uniform1ui( this.addr, v );
        cache[ 0 ] = v;
    }
    // Helper to pick the right setter for the singular case
    function getSingularSetter( type ) {
        switch ( type ) {
            case 0x1406: return setValueV1f; // FLOAT
            case 0x8b50: return setValueV2f; // _VEC2
            case 0x8b51: return setValueV3f; // _VEC3
            case 0x8b52: return setValueV4f; // _VEC4
            case 0x8b5a: return setValueM2; // _MAT2
            case 0x8b5b: return setValueM3; // _MAT3
            case 0x8b5c: return setValueM4; // _MAT4
            case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL
            case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2
            case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3
            case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4
            case 0x1405: return setValueV1ui; // UINT
            case 0x8b5e: // SAMPLER_2D
            case 0x8d66: // SAMPLER_EXTERNAL_OES
            case 0x8dca: // INT_SAMPLER_2D
            case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
            case 0x8b62: // SAMPLER_2D_SHADOW
                return setValueT1;
            case 0x8b5f: // SAMPLER_3D
            case 0x8dcb: // INT_SAMPLER_3D
            case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D
                return setValueT3D1;
            case 0x8b60: // SAMPLER_CUBE
            case 0x8dcc: // INT_SAMPLER_CUBE
            case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
            case 0x8dc5: // SAMPLER_CUBE_SHADOW
                return setValueT6;
            case 0x8dc1: // SAMPLER_2D_ARRAY
            case 0x8dcf: // INT_SAMPLER_2D_ARRAY
            case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
            case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW
                return setValueT2DArray1;
        }
    }
    // Array of scalars
    function setValueV1fArray( gl, v ) {
        gl.uniform1fv( this.addr, v );
    }
    // Integer / Boolean vectors or arrays thereof (always flat arrays)
    function setValueV1iArray( gl, v ) {
        gl.uniform1iv( this.addr, v );
    }
    function setValueV2iArray( gl, v ) {
        gl.uniform2iv( this.addr, v );
    }
    function setValueV3iArray( gl, v ) {
        gl.uniform3iv( this.addr, v );
    }
    function setValueV4iArray( gl, v ) {
        gl.uniform4iv( this.addr, v );
    }
    // Array of vectors (flat or from THREE classes)
    function setValueV2fArray( gl, v ) {
        var data = flatten( v, this.size, 2 );
        gl.uniform2fv( this.addr, data );
    }
    function setValueV3fArray( gl, v ) {
        var data = flatten( v, this.size, 3 );
        gl.uniform3fv( this.addr, data );
    }
    function setValueV4fArray( gl, v ) {
        var data = flatten( v, this.size, 4 );
        gl.uniform4fv( this.addr, data );
    }
    // Array of matrices (flat or from THREE clases)
    function setValueM2Array( gl, v ) {
        var data = flatten( v, this.size, 4 );
        gl.uniformMatrix2fv( this.addr, false, data );
    }
    function setValueM3Array( gl, v ) {
        var data = flatten( v, this.size, 9 );
        gl.uniformMatrix3fv( this.addr, false, data );
    }
    function setValueM4Array( gl, v ) {
        var data = flatten( v, this.size, 16 );
        gl.uniformMatrix4fv( this.addr, false, data );
    }
    // Array of textures (2D / Cube)
    function setValueT1Array( gl, v, textures ) {
        var n = v.length;
        var units = allocTexUnits( textures, n );
        gl.uniform1iv( this.addr, units );
        for ( var i = 0; i !== n; ++ i ) {
            textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] );
        }
    }
    function setValueT6Array( gl, v, textures ) {
        var n = v.length;
        var units = allocTexUnits( textures, n );
        gl.uniform1iv( this.addr, units );
        for ( var i = 0; i !== n; ++ i ) {
            textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );
        }
    }
    // Helper to pick the right setter for a pure (bottom-level) array
    function getPureArraySetter( type ) {
        switch ( type ) {
            case 0x1406: return setValueV1fArray; // FLOAT
            case 0x8b50: return setValueV2fArray; // _VEC2
            case 0x8b51: return setValueV3fArray; // _VEC3
            case 0x8b52: return setValueV4fArray; // _VEC4
            case 0x8b5a: return setValueM2Array; // _MAT2
            case 0x8b5b: return setValueM3Array; // _MAT3
            case 0x8b5c: return setValueM4Array; // _MAT4
            case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL
            case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2
            case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3
            case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4
            case 0x8b5e: // SAMPLER_2D
            case 0x8d66: // SAMPLER_EXTERNAL_OES
            case 0x8dca: // INT_SAMPLER_2D
            case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
            case 0x8b62: // SAMPLER_2D_SHADOW
                return setValueT1Array;
            case 0x8b60: // SAMPLER_CUBE
            case 0x8dcc: // INT_SAMPLER_CUBE
            case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
            case 0x8dc5: // SAMPLER_CUBE_SHADOW
                return setValueT6Array;
        }
    }
    // --- Uniform Classes ---
    function SingleUniform( id, activeInfo, addr ) {
        this.id = id;
        this.addr = addr;
        this.cache = [];
        this.setValue = getSingularSetter( activeInfo.type );
        // this.path = activeInfo.name; // DEBUG
    }
    function PureArrayUniform( id, activeInfo, addr ) {
        this.id = id;
        this.addr = addr;
        this.cache = [];
        this.size = activeInfo.size;
        this.setValue = getPureArraySetter( activeInfo.type );
        // this.path = activeInfo.name; // DEBUG
    }
    PureArrayUniform.prototype.updateCache = function ( data ) {
        var cache = this.cache;
        if ( data instanceof Float32Array && cache.length !== data.length ) {
            this.cache = new Float32Array( data.length );
        }
        copyArray( cache, data );
    };
    function StructuredUniform( id ) {
        this.id = id;
        this.seq = [];
        this.map = {};
    }
    StructuredUniform.prototype.setValue = function ( gl, value, textures ) {
        var seq = this.seq;
        for ( var i = 0, n = seq.length; i !== n; ++ i ) {
            var u = seq[ i ];
            u.setValue( gl, value[ u.id ], textures );
        }
    };
    // --- Top-level ---
    // Parser - builds up the property tree from the path strings
    var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;
    // extracts
    //     - the identifier (member name or array index)
    // - followed by an optional right bracket (found when array index)
    // - followed by an optional left bracket or dot (type of subscript)
    //
    // Note: These portions can be read in a non-overlapping fashion and
    // allow straightforward parsing of the hierarchy that WebGL encodes
    // in the uniform names.
    function addUniform( container, uniformObject ) {
        container.seq.push( uniformObject );
        container.map[ uniformObject.id ] = uniformObject;
    }
    function parseUniform( activeInfo, addr, container ) {
        var path = activeInfo.name,
            pathLength = path.length;
        // reset RegExp object, because of the early exit of a previous run
        RePathPart.lastIndex = 0;
        while ( true ) {
            var match = RePathPart.exec( path ),
                matchEnd = RePathPart.lastIndex,
                id = match[ 1 ],
                idIsIndex = match[ 2 ] === ']',
                subscript = match[ 3 ];
            if ( idIsIndex ) { id = id | 0; } // convert to integer
            if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {
                // bare name or "pure" bottom-level array "[0]" suffix
                addUniform( container, subscript === undefined ?
                    new SingleUniform( id, activeInfo, addr ) :
                    new PureArrayUniform( id, activeInfo, addr ) );
                break;
            } else {
                // step into inner node / create it in case it doesn't exist
                var map = container.map, next = map[ id ];
                if ( next === undefined ) {
                    next = new StructuredUniform( id );
                    addUniform( container, next );
                }
                container = next;
            }
        }
    }
    // Root Container
    function WebGLUniforms( gl, program ) {
        this.seq = [];
        this.map = {};
        var n = gl.getProgramParameter( program, 35718 );
        for ( var i = 0; i < n; ++ i ) {
            var info = gl.getActiveUniform( program, i ),
                addr = gl.getUniformLocation( program, info.name );
            parseUniform( info, addr, this );
        }
    }
    WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) {
        var u = this.map[ name ];
        if ( u !== undefined ) { u.setValue( gl, value, textures ); }
    };
    WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {
        var v = object[ name ];
        if ( v !== undefined ) { this.setValue( gl, name, v ); }
    };
    // Static interface
    WebGLUniforms.upload = function ( gl, seq, values, textures ) {
        for ( var i = 0, n = seq.length; i !== n; ++ i ) {
            var u = seq[ i ],
                v = values[ u.id ];
            if ( v.needsUpdate !== false ) {
                // note: always updating when .needsUpdate is undefined
                u.setValue( gl, v.value, textures );
            }
        }
    };
    WebGLUniforms.seqWithValue = function ( seq, values ) {
        var r = [];
        for ( var i = 0, n = seq.length; i !== n; ++ i ) {
            var u = seq[ i ];
            if ( u.id in values ) { r.push( u ); }
        }
        return r;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLShader( gl, type, string ) {
        var shader = gl.createShader( type );
        gl.shaderSource( shader, string );
        gl.compileShader( shader );
        return shader;
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var programIdCount = 0;
    function addLineNumbers( string ) {
        var lines = string.split( '\n' );
        for ( var i = 0; i < lines.length; i ++ ) {
            lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
        }
        return lines.join( '\n' );
    }
    function getEncodingComponents( encoding ) {
        switch ( encoding ) {
            case LinearEncoding:
                return [ 'Linear', '( value )' ];
            case sRGBEncoding:
                return [ 'sRGB', '( value )' ];
            case RGBEEncoding:
                return [ 'RGBE', '( value )' ];
            case RGBM7Encoding:
                return [ 'RGBM', '( value, 7.0 )' ];
            case RGBM16Encoding:
                return [ 'RGBM', '( value, 16.0 )' ];
            case RGBDEncoding:
                return [ 'RGBD', '( value, 256.0 )' ];
            case GammaEncoding:
                return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ];
            case LogLuvEncoding:
                return [ 'LogLuv', '( value )' ];
            default:
                throw new Error( 'unsupported encoding: ' + encoding );
        }
    }
    function getShaderErrors( gl, shader, type ) {
        var status = gl.getShaderParameter( shader, 35713 );
        var log = gl.getShaderInfoLog( shader ).trim();
        if ( status && log === '' ) { return ''; }
        // --enable-privileged-webgl-extension
        // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
        var source = gl.getShaderSource( shader );
        return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers( source );
    }
    function getTexelDecodingFunction( functionName, encoding ) {
        var components = getEncodingComponents( encoding );
        return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }';
    }
    function getTexelEncodingFunction( functionName, encoding ) {
        var components = getEncodingComponents( encoding );
        return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }';
    }
    function getToneMappingFunction( functionName, toneMapping ) {
        var toneMappingName;
        switch ( toneMapping ) {
            case LinearToneMapping:
                toneMappingName = 'Linear';
                break;
            case ReinhardToneMapping:
                toneMappingName = 'Reinhard';
                break;
            case Uncharted2ToneMapping:
                toneMappingName = 'Uncharted2';
                break;
            case CineonToneMapping:
                toneMappingName = 'OptimizedCineon';
                break;
            case ACESFilmicToneMapping:
                toneMappingName = 'ACESFilmic';
                break;
            default:
                throw new Error( 'unsupported toneMapping: ' + toneMapping );
        }
        return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
    }
    function generateExtensions( parameters ) {
        var chunks = [
            ( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '',
            ( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '',
            ( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '',
            ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''
        ];
        return chunks.filter( filterEmptyLine ).join( '\n' );
    }
    function generateDefines( defines ) {
        var chunks = [];
        for ( var name in defines ) {
            var value = defines[ name ];
            if ( value === false ) { continue; }
            chunks.push( '#define ' + name + ' ' + value );
        }
        return chunks.join( '\n' );
    }
    function fetchAttributeLocations( gl, program ) {
        var attributes = {};
        var n = gl.getProgramParameter( program, 35721 );
        for ( var i = 0; i < n; i ++ ) {
            var info = gl.getActiveAttrib( program, i );
            var name = info.name;
            // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
            attributes[ name ] = gl.getAttribLocation( program, name );
        }
        return attributes;
    }
    function filterEmptyLine( string ) {
        return string !== '';
    }
    function replaceLightNums( string, parameters ) {
        return string
            .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
            .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
            .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
            .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
            .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights )
            .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows )
            .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows )
            .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows );
    }
    function replaceClippingPlaneNums( string, parameters ) {
        return string
            .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes )
            .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) );
    }
    // Resolve Includes
    var includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
    function resolveIncludes( string ) {
        return string.replace( includePattern, includeReplacer );
    }
    function includeReplacer( match, include ) {
        var string = ShaderChunk[ include ];
        if ( string === undefined ) {
            throw new Error( 'Can not resolve #include <' + include + '>' );
        }
        return resolveIncludes( string );
    }
    // Unroll Loops
    var deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
    var unrollLoopPattern = /#pragma unroll_loop_start[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}[\s]+?#pragma unroll_loop_end/g;
    function unrollLoops( string ) {
        return string
            .replace( unrollLoopPattern, loopReplacer )
            .replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer );
    }
    function deprecatedLoopReplacer( match, start, end, snippet ) {
        console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' );
        return loopReplacer( match, start, end, snippet );
    }
    function loopReplacer( match, start, end, snippet ) {
        var string = '';
        for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {
            string += snippet
                .replace( /\[ i \]/g, '[ ' + i + ' ]' )
                .replace( /UNROLLED_LOOP_INDEX/g, i );
        }
        return string;
    }
    //
    function generatePrecision( parameters ) {
        var precisionstring = "precision " + parameters.precision + " float;\nprecision " + parameters.precision + " int;";
        if ( parameters.precision === "highp" ) {
            precisionstring += "\n#define HIGH_PRECISION";
        } else if ( parameters.precision === "mediump" ) {
            precisionstring += "\n#define MEDIUM_PRECISION";
        } else if ( parameters.precision === "lowp" ) {
            precisionstring += "\n#define LOW_PRECISION";
        }
        return precisionstring;
    }
    function generateShadowMapTypeDefine( parameters ) {
        var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
        if ( parameters.shadowMapType === PCFShadowMap ) {
            shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
        } else if ( parameters.shadowMapType === PCFSoftShadowMap ) {
            shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
        } else if ( parameters.shadowMapType === VSMShadowMap ) {
            shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
        }
        return shadowMapTypeDefine;
    }
    function generateEnvMapTypeDefine( parameters ) {
        var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
        if ( parameters.envMap ) {
            switch ( parameters.envMapMode ) {
                case CubeReflectionMapping:
                case CubeRefractionMapping:
                    envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
                    break;
                case CubeUVReflectionMapping:
                case CubeUVRefractionMapping:
                    envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
                    break;
                case EquirectangularReflectionMapping:
                case EquirectangularRefractionMapping:
                    envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
                    break;
                case SphericalReflectionMapping:
                    envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
                    break;
            }
        }
        return envMapTypeDefine;
    }
    function generateEnvMapModeDefine( parameters ) {
        var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
        if ( parameters.envMap ) {
            switch ( parameters.envMapMode ) {
                case CubeRefractionMapping:
                case EquirectangularRefractionMapping:
                    envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
                    break;
            }
        }
        return envMapModeDefine;
    }
    function generateEnvMapBlendingDefine( parameters ) {
        var envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
        if ( parameters.envMap ) {
            switch ( parameters.combine ) {
                case MultiplyOperation:
                    envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
                    break;
                case MixOperation:
                    envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
                    break;
                case AddOperation:
                    envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
                    break;
            }
        }
        return envMapBlendingDefine;
    }
    function WebGLProgram( renderer, cacheKey, parameters ) {
        var gl = renderer.getContext();
        var defines = parameters.defines;
        var vertexShader = parameters.vertexShader;
        var fragmentShader = parameters.fragmentShader;
        var shadowMapTypeDefine = generateShadowMapTypeDefine( parameters );
        var envMapTypeDefine = generateEnvMapTypeDefine( parameters );
        var envMapModeDefine = generateEnvMapModeDefine( parameters );
        var envMapBlendingDefine = generateEnvMapBlendingDefine( parameters );
        var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
        var customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters );
        var customDefines = generateDefines( defines );
        var program = gl.createProgram();
        var prefixVertex, prefixFragment;
        if ( parameters.isRawShaderMaterial ) {
            prefixVertex = [
                customDefines
            ].filter( filterEmptyLine ).join( '\n' );
            if ( prefixVertex.length > 0 ) {
                prefixVertex += '\n';
            }
            prefixFragment = [
                customExtensions,
                customDefines
            ].filter( filterEmptyLine ).join( '\n' );
            if ( prefixFragment.length > 0 ) {
                prefixFragment += '\n';
            }
        } else {
            prefixVertex = [
                generatePrecision( parameters ),
                '#define SHADER_NAME ' + parameters.shaderName,
                customDefines,
                parameters.instancing ? '#define USE_INSTANCING' : '',
                parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
                '#define GAMMA_FACTOR ' + gammaFactorDefine,
                '#define MAX_BONES ' + parameters.maxBones,
                ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
                ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',
                parameters.map ? '#define USE_MAP' : '',
                parameters.envMap ? '#define USE_ENVMAP' : '',
                parameters.envMap ? '#define ' + envMapModeDefine : '',
                parameters.lightMap ? '#define USE_LIGHTMAP' : '',
                parameters.aoMap ? '#define USE_AOMAP' : '',
                parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
                parameters.bumpMap ? '#define USE_BUMPMAP' : '',
                parameters.normalMap ? '#define USE_NORMALMAP' : '',
                ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
                ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',
                parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
                parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
                parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
                parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
                parameters.specularMap ? '#define USE_SPECULARMAP' : '',
                parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
                parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
                parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
                parameters.vertexTangents ? '#define USE_TANGENT' : '',
                parameters.vertexColors ? '#define USE_COLOR' : '',
                parameters.vertexUvs ? '#define USE_UV' : '',
                parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',
                parameters.flatShading ? '#define FLAT_SHADED' : '',
                parameters.skinning ? '#define USE_SKINNING' : '',
                parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
                parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
                parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
                parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
                parameters.flipSided ? '#define FLIP_SIDED' : '',
                parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
                parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
                parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
                parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
                ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
                'uniform mat4 modelMatrix;',
                'uniform mat4 modelViewMatrix;',
                'uniform mat4 projectionMatrix;',
                'uniform mat4 viewMatrix;',
                'uniform mat3 normalMatrix;',
                'uniform vec3 cameraPosition;',
                'uniform bool isOrthographic;',
                '#ifdef USE_INSTANCING',
                ' attribute mat4 instanceMatrix;',
                '#endif',
                'attribute vec3 position;',
                'attribute vec3 normal;',
                'attribute vec2 uv;',
                '#ifdef USE_TANGENT',
                '    attribute vec4 tangent;',
                '#endif',
                '#ifdef USE_COLOR',
                '    attribute vec3 color;',
                '#endif',
                '#ifdef USE_MORPHTARGETS',
                '    attribute vec3 morphTarget0;',
                '    attribute vec3 morphTarget1;',
                '    attribute vec3 morphTarget2;',
                '    attribute vec3 morphTarget3;',
                '    #ifdef USE_MORPHNORMALS',
                '        attribute vec3 morphNormal0;',
                '        attribute vec3 morphNormal1;',
                '        attribute vec3 morphNormal2;',
                '        attribute vec3 morphNormal3;',
                '    #else',
                '        attribute vec3 morphTarget4;',
                '        attribute vec3 morphTarget5;',
                '        attribute vec3 morphTarget6;',
                '        attribute vec3 morphTarget7;',
                '    #endif',
                '#endif',
                '#ifdef USE_SKINNING',
                '    attribute vec4 skinIndex;',
                '    attribute vec4 skinWeight;',
                '#endif',
                '\n'
            ].filter( filterEmptyLine ).join( '\n' );
            prefixFragment = [
                customExtensions,
                generatePrecision( parameters ),
                '#define SHADER_NAME ' + parameters.shaderName,
                customDefines,
                parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer
                '#define GAMMA_FACTOR ' + gammaFactorDefine,
                ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
                ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',
                parameters.map ? '#define USE_MAP' : '',
                parameters.matcap ? '#define USE_MATCAP' : '',
                parameters.envMap ? '#define USE_ENVMAP' : '',
                parameters.envMap ? '#define ' + envMapTypeDefine : '',
                parameters.envMap ? '#define ' + envMapModeDefine : '',
                parameters.envMap ? '#define ' + envMapBlendingDefine : '',
                parameters.lightMap ? '#define USE_LIGHTMAP' : '',
                parameters.aoMap ? '#define USE_AOMAP' : '',
                parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
                parameters.bumpMap ? '#define USE_BUMPMAP' : '',
                parameters.normalMap ? '#define USE_NORMALMAP' : '',
                ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
                ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',
                parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
                parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
                parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
                parameters.specularMap ? '#define USE_SPECULARMAP' : '',
                parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
                parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
                parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
                parameters.sheen ? '#define USE_SHEEN' : '',
                parameters.vertexTangents ? '#define USE_TANGENT' : '',
                parameters.vertexColors ? '#define USE_COLOR' : '',
                parameters.vertexUvs ? '#define USE_UV' : '',
                parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',
                parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',
                parameters.flatShading ? '#define FLAT_SHADED' : '',
                parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
                parameters.flipSided ? '#define FLIP_SIDED' : '',
                parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
                parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
                parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '',
                parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '',
                parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
                ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
                ( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '',
                'uniform mat4 viewMatrix;',
                'uniform vec3 cameraPosition;',
                'uniform bool isOrthographic;',
                ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '',
                ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
                ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '',
                parameters.dithering ? '#define DITHERING' : '',
                ( parameters.outputEncoding || parameters.mapEncoding || parameters.matcapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding || parameters.lightMapEncoding ) ?
                    ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
                parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
                parameters.matcapEncoding ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '',
                parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
                parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
                parameters.lightMapEncoding ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '',
                parameters.outputEncoding ? getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ) : '',
                parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '',
                '\n'
            ].filter( filterEmptyLine ).join( '\n' );
        }
        vertexShader = resolveIncludes( vertexShader );
        vertexShader = replaceLightNums( vertexShader, parameters );
        vertexShader = replaceClippingPlaneNums( vertexShader, parameters );
        fragmentShader = resolveIncludes( fragmentShader );
        fragmentShader = replaceLightNums( fragmentShader, parameters );
        fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters );
        vertexShader = unrollLoops( vertexShader );
        fragmentShader = unrollLoops( fragmentShader );
        if ( parameters.isWebGL2 && ! parameters.isRawShaderMaterial ) {
            var isGLSL3ShaderMaterial = false;
            var versionRegex = /^\s*#version\s+300\s+es\s*\n/;
            if ( parameters.isShaderMaterial &&
                vertexShader.match( versionRegex ) !== null &&
                fragmentShader.match( versionRegex ) !== null ) {
                isGLSL3ShaderMaterial = true;
                vertexShader = vertexShader.replace( versionRegex, '' );
                fragmentShader = fragmentShader.replace( versionRegex, '' );
            }
            // GLSL 3.0 conversion
            prefixVertex = [
                '#version 300 es\n',
                '#define attribute in',
                '#define varying out',
                '#define texture2D texture'
            ].join( '\n' ) + '\n' + prefixVertex;
            prefixFragment = [
                '#version 300 es\n',
                '#define varying in',
                isGLSL3ShaderMaterial ? '' : 'out highp vec4 pc_fragColor;',
                isGLSL3ShaderMaterial ? '' : '#define gl_FragColor pc_fragColor',
                '#define gl_FragDepthEXT gl_FragDepth',
                '#define texture2D texture',
                '#define textureCube texture',
                '#define texture2DProj textureProj',
                '#define texture2DLodEXT textureLod',
                '#define texture2DProjLodEXT textureProjLod',
                '#define textureCubeLodEXT textureLod',
                '#define texture2DGradEXT textureGrad',
                '#define texture2DProjGradEXT textureProjGrad',
                '#define textureCubeGradEXT textureGrad'
            ].join( '\n' ) + '\n' + prefixFragment;
        }
        var vertexGlsl = prefixVertex + vertexShader;
        var fragmentGlsl = prefixFragment + fragmentShader;
        // console.log( '*VERTEX*', vertexGlsl );
        // console.log( '*FRAGMENT*', fragmentGlsl );
        var glVertexShader = WebGLShader( gl, 35633, vertexGlsl );
        var glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl );
        gl.attachShader( program, glVertexShader );
        gl.attachShader( program, glFragmentShader );
        // Force a particular attribute to index 0.
        if ( parameters.index0AttributeName !== undefined ) {
            gl.bindAttribLocation( program, 0, parameters.index0AttributeName );
        } else if ( parameters.morphTargets === true ) {
            // programs with morphTargets displace position out of attribute 0
            gl.bindAttribLocation( program, 0, 'position' );
        }
        gl.linkProgram( program );
        // check for link errors
        if ( renderer.debug.checkShaderErrors ) {
            var programLog = gl.getProgramInfoLog( program ).trim();
            var vertexLog = gl.getShaderInfoLog( glVertexShader ).trim();
            var fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim();
            var runnable = true;
            var haveDiagnostics = true;
            if ( gl.getProgramParameter( program, 35714 ) === false ) {
                runnable = false;
                var vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' );
                var fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' );
                console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter( program, 35715 ), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors );
            } else if ( programLog !== '' ) {
                console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
            } else if ( vertexLog === '' || fragmentLog === '' ) {
                haveDiagnostics = false;
            }
            if ( haveDiagnostics ) {
                this.diagnostics = {
                    runnable: runnable,
                    programLog: programLog,
                    vertexShader: {
                        log: vertexLog,
                        prefix: prefixVertex
                    },
                    fragmentShader: {
                        log: fragmentLog,
                        prefix: prefixFragment
                    }
                };
            }
        }
        // clean up
        gl.detachShader( program, glVertexShader );
        gl.detachShader( program, glFragmentShader );
        gl.deleteShader( glVertexShader );
        gl.deleteShader( glFragmentShader );
        // set up caching for uniform locations
        var cachedUniforms;
        this.getUniforms = function () {
            if ( cachedUniforms === undefined ) {
                cachedUniforms = new WebGLUniforms( gl, program );
            }
            return cachedUniforms;
        };
        // set up caching for attribute locations
        var cachedAttributes;
        this.getAttributes = function () {
            if ( cachedAttributes === undefined ) {
                cachedAttributes = fetchAttributeLocations( gl, program );
            }
            return cachedAttributes;
        };
        // free resource
        this.destroy = function () {
            gl.deleteProgram( program );
            this.program = undefined;
        };
        //
        this.name = parameters.shaderName;
        this.id = programIdCount ++;
        this.cacheKey = cacheKey;
        this.usedTimes = 1;
        this.program = program;
        this.vertexShader = glVertexShader;
        this.fragmentShader = glFragmentShader;
        return this;
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLPrograms( renderer, extensions, capabilities ) {
        var programs = [];
        var isWebGL2 = capabilities.isWebGL2;
        var logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
        var floatVertexTextures = capabilities.floatVertexTextures;
        var precision = capabilities.precision;
        var maxVertexUniforms = capabilities.maxVertexUniforms;
        var vertexTextures = capabilities.vertexTextures;
        var shaderIDs = {
            MeshDepthMaterial: 'depth',
            MeshDistanceMaterial: 'distanceRGBA',
            MeshNormalMaterial: 'normal',
            MeshBasicMaterial: 'basic',
            MeshLambertMaterial: 'lambert',
            MeshPhongMaterial: 'phong',
            MeshToonMaterial: 'toon',
            MeshStandardMaterial: 'physical',
            MeshPhysicalMaterial: 'physical',
            MeshMatcapMaterial: 'matcap',
            LineBasicMaterial: 'basic',
            LineDashedMaterial: 'dashed',
            PointsMaterial: 'points',
            ShadowMaterial: 'shadow',
            SpriteMaterial: 'sprite'
        };
        var parameterNames = [
            "precision", "isWebGL2", "supportsVertexTextures", "outputEncoding", "instancing",
            "map", "mapEncoding", "matcap", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "envMapCubeUV",
            "lightMap", "lightMapEncoding", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "tangentSpaceNormalMap", "clearcoatMap", "clearcoatRoughnessMap", "clearcoatNormalMap", "displacementMap", "specularMap",
            "roughnessMap", "metalnessMap", "gradientMap",
            "alphaMap", "combine", "vertexColors", "vertexTangents", "vertexUvs", "uvsVertexOnly", "fog", "useFog", "fogExp2",
            "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
            "maxBones", "useVertexTexture", "morphTargets", "morphNormals",
            "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
            "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
            "numDirLightShadows", "numPointLightShadows", "numSpotLightShadows",
            "shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
            "alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering",
            "sheen"
        ];
        function getShaderObject( material, shaderID ) {
            var shaderobject;
            if ( shaderID ) {
                var shader = ShaderLib[ shaderID ];
                shaderobject = {
                    name: material.type,
                    uniforms: UniformsUtils.clone( shader.uniforms ),
                    vertexShader: shader.vertexShader,
                    fragmentShader: shader.fragmentShader
                };
            } else {
                shaderobject = {
                    name: material.type,
                    uniforms: material.uniforms,
                    vertexShader: material.vertexShader,
                    fragmentShader: material.fragmentShader
                };
            }
            return shaderobject;
        }
        function allocateBones( object ) {
            var skeleton = object.skeleton;
            var bones = skeleton.bones;
            if ( floatVertexTextures ) {
                return 1024;
            } else {
                // default for when object is not specified
                // ( for example when prebuilding shader to be used with multiple objects )
                //
                // - leave some extra space for other uniforms
                // - limit here is ANGLE's 254 max uniform vectors
                // (up to 54 should be safe)
                var nVertexUniforms = maxVertexUniforms;
                var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
                var maxBones = Math.min( nVertexMatrices, bones.length );
                if ( maxBones < bones.length ) {
                    console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
                    return 0;
                }
                return maxBones;
            }
        }
        function getTextureEncodingFromMap( map ) {
            var encoding;
            if ( ! map ) {
                encoding = LinearEncoding;
            } else if ( map.isTexture ) {
                encoding = map.encoding;
            } else if ( map.isWebGLRenderTarget ) {
                console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
                encoding = map.texture.encoding;
            }
            return encoding;
        }
        this.getParameters = function ( material, lights, shadows, scene, nClipPlanes, nClipIntersection, object ) {
            var fog = scene.fog;
            var environment = material.isMeshStandardMaterial ? scene.environment : null;
            var envMap = material.envMap || environment;
            var shaderID = shaderIDs[ material.type ];
            // heuristics to create shader parameters according to lights in the scene
            // (not to blow over maxLights budget)
            var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
            if ( material.precision !== null ) {
                precision = capabilities.getMaxPrecision( material.precision );
                if ( precision !== material.precision ) {
                    console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
                }
            }
            var shaderobject = getShaderObject( material, shaderID );
            material.onBeforeCompile( shaderobject, renderer );
            var currentRenderTarget = renderer.getRenderTarget();
            var parameters = {
                isWebGL2: isWebGL2,
                shaderID: shaderID,
                shaderName: shaderobject.name,
                uniforms: shaderobject.uniforms,
                vertexShader: shaderobject.vertexShader,
                fragmentShader: shaderobject.fragmentShader,
                defines: material.defines,
                isRawShaderMaterial: material.isRawShaderMaterial,
                isShaderMaterial: material.isShaderMaterial,
                precision: precision,
                instancing: object.isInstancedMesh === true,
                supportsVertexTextures: vertexTextures,
                outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding,
                map: !! material.map,
                mapEncoding: getTextureEncodingFromMap( material.map ),
                matcap: !! material.matcap,
                matcapEncoding: getTextureEncodingFromMap( material.matcap ),
                envMap: !! envMap,
                envMapMode: envMap && envMap.mapping,
                envMapEncoding: getTextureEncodingFromMap( envMap ),
                envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ),
                lightMap: !! material.lightMap,
                lightMapEncoding: getTextureEncodingFromMap( material.lightMap ),
                aoMap: !! material.aoMap,
                emissiveMap: !! material.emissiveMap,
                emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ),
                bumpMap: !! material.bumpMap,
                normalMap: !! material.normalMap,
                objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
                tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
                clearcoatMap: !! material.clearcoatMap,
                clearcoatRoughnessMap: !! material.clearcoatRoughnessMap,
                clearcoatNormalMap: !! material.clearcoatNormalMap,
                displacementMap: !! material.displacementMap,
                roughnessMap: !! material.roughnessMap,
                metalnessMap: !! material.metalnessMap,
                specularMap: !! material.specularMap,
                alphaMap: !! material.alphaMap,
                gradientMap: !! material.gradientMap,
                sheen: !! material.sheen,
                combine: material.combine,
                vertexTangents: ( material.normalMap && material.vertexTangents ),
                vertexColors: material.vertexColors,
                vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap,
                uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap ) && !! material.displacementMap,
                fog: !! fog,
                useFog: material.fog,
                fogExp2: ( fog && fog.isFogExp2 ),
                flatShading: material.flatShading,
                sizeAttenuation: material.sizeAttenuation,
                logarithmicDepthBuffer: logarithmicDepthBuffer,
                skinning: material.skinning && maxBones > 0,
                maxBones: maxBones,
                useVertexTexture: floatVertexTextures,
                morphTargets: material.morphTargets,
                morphNormals: material.morphNormals,
                maxMorphTargets: renderer.maxMorphTargets,
                maxMorphNormals: renderer.maxMorphNormals,
                numDirLights: lights.directional.length,
                numPointLights: lights.point.length,
                numSpotLights: lights.spot.length,
                numRectAreaLights: lights.rectArea.length,
                numHemiLights: lights.hemi.length,
                numDirLightShadows: lights.directionalShadowMap.length,
                numPointLightShadows: lights.pointShadowMap.length,
                numSpotLightShadows: lights.spotShadowMap.length,
                numClippingPlanes: nClipPlanes,
                numClipIntersection: nClipIntersection,
                dithering: material.dithering,
                shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
                shadowMapType: renderer.shadowMap.type,
                toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
                physicallyCorrectLights: renderer.physicallyCorrectLights,
                premultipliedAlpha: material.premultipliedAlpha,
                alphaTest: material.alphaTest,
                doubleSided: material.side === DoubleSide,
                flipSided: material.side === BackSide,
                depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false,
                index0AttributeName: material.index0AttributeName,
                extensionDerivatives: material.extensions && material.extensions.derivatives,
                extensionFragDepth: material.extensions && material.extensions.fragDepth,
                extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
                extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
                rendererExtensionFragDepth: isWebGL2 || extensions.get( 'EXT_frag_depth' ) !== null,
                rendererExtensionDrawBuffers: isWebGL2 || extensions.get( 'WEBGL_draw_buffers' ) !== null,
                rendererExtensionShaderTextureLod: isWebGL2 || extensions.get( 'EXT_shader_texture_lod' ) !== null,
                onBeforeCompile: material.onBeforeCompile
            };
            return parameters;
        };
        this.getProgramCacheKey = function ( parameters ) {
            var array = [];
            if ( parameters.shaderID ) {
                array.push( parameters.shaderID );
            } else {
                array.push( parameters.fragmentShader );
                array.push( parameters.vertexShader );
            }
            if ( parameters.defines !== undefined ) {
                for ( var name in parameters.defines ) {
                    array.push( name );
                    array.push( parameters.defines[ name ] );
                }
            }
            if ( parameters.isRawShaderMaterial === undefined ) {
                for ( var i = 0; i < parameterNames.length; i ++ ) {
                    array.push( parameters[ parameterNames[ i ] ] );
                }
                array.push( renderer.outputEncoding );
                array.push( renderer.gammaFactor );
            }
            array.push( parameters.onBeforeCompile.toString() );
            return array.join();
        };
        this.acquireProgram = function ( parameters, cacheKey ) {
            var program;
            // Check if code has been already compiled
            for ( var p = 0, pl = programs.length; p < pl; p ++ ) {
                var preexistingProgram = programs[ p ];
                if ( preexistingProgram.cacheKey === cacheKey ) {
                    program = preexistingProgram;
                    ++ program.usedTimes;
                    break;
                }
            }
            if ( program === undefined ) {
                program = new WebGLProgram( renderer, cacheKey, parameters );
                programs.push( program );
            }
            return program;
        };
        this.releaseProgram = function ( program ) {
            if ( -- program.usedTimes === 0 ) {
                // Remove from unordered set
                var i = programs.indexOf( program );
                programs[ i ] = programs[ programs.length - 1 ];
                programs.pop();
                // Free WebGL resources
                program.destroy();
            }
        };
        // Exposed for resource monitoring & error feedback via renderer.info:
        this.programs = programs;
    }
    /**
     * @author fordacious / fordacious.github.io
     */
    function WebGLProperties() {
        var properties = new WeakMap();
        function get( object ) {
            var map = properties.get( object );
            if ( map === undefined ) {
                map = {};
                properties.set( object, map );
            }
            return map;
        }
        function remove( object ) {
            properties.delete( object );
        }
        function update( object, key, value ) {
            properties.get( object )[ key ] = value;
        }
        function dispose() {
            properties = new WeakMap();
        }
        return {
            get: get,
            remove: remove,
            update: update,
            dispose: dispose
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function painterSortStable( a, b ) {
        if ( a.groupOrder !== b.groupOrder ) {
            return a.groupOrder - b.groupOrder;
        } else if ( a.renderOrder !== b.renderOrder ) {
            return a.renderOrder - b.renderOrder;
        } else if ( a.program !== b.program ) {
            return a.program.id - b.program.id;
        } else if ( a.material.id !== b.material.id ) {
            return a.material.id - b.material.id;
        } else if ( a.z !== b.z ) {
            return a.z - b.z;
        } else {
            return a.id - b.id;
        }
    }
    function reversePainterSortStable( a, b ) {
        if ( a.groupOrder !== b.groupOrder ) {
            return a.groupOrder - b.groupOrder;
        } else if ( a.renderOrder !== b.renderOrder ) {
            return a.renderOrder - b.renderOrder;
        } else if ( a.z !== b.z ) {
            return b.z - a.z;
        } else {
            return a.id - b.id;
        }
    }
    function WebGLRenderList() {
        var renderItems = [];
        var renderItemsIndex = 0;
        var opaque = [];
        var transparent = [];
        var defaultProgram = { id: - 1 };
        function init() {
            renderItemsIndex = 0;
            opaque.length = 0;
            transparent.length = 0;
        }
        function getNextRenderItem( object, geometry, material, groupOrder, z, group ) {
            var renderItem = renderItems[ renderItemsIndex ];
            if ( renderItem === undefined ) {
                renderItem = {
                    id: object.id,
                    object: object,
                    geometry: geometry,
                    material: material,
                    program: material.program || defaultProgram,
                    groupOrder: groupOrder,
                    renderOrder: object.renderOrder,
                    z: z,
                    group: group
                };
                renderItems[ renderItemsIndex ] = renderItem;
            } else {
                renderItem.id = object.id;
                renderItem.object = object;
                renderItem.geometry = geometry;
                renderItem.material = material;
                renderItem.program = material.program || defaultProgram;
                renderItem.groupOrder = groupOrder;
                renderItem.renderOrder = object.renderOrder;
                renderItem.z = z;
                renderItem.group = group;
            }
            renderItemsIndex ++;
            return renderItem;
        }
        function push( object, geometry, material, groupOrder, z, group ) {
            var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );
            ( material.transparent === true ? transparent : opaque ).push( renderItem );
        }
        function unshift( object, geometry, material, groupOrder, z, group ) {
            var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );
            ( material.transparent === true ? transparent : opaque ).unshift( renderItem );
        }
        function sort( customOpaqueSort, customTransparentSort ) {
            if ( opaque.length > 1 ) { opaque.sort( customOpaqueSort || painterSortStable ); }
            if ( transparent.length > 1 ) { transparent.sort( customTransparentSort || reversePainterSortStable ); }
        }
        function finish() {
            // Clear references from inactive renderItems in the list
            for ( var i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) {
                var renderItem = renderItems[ i ];
                if ( renderItem.id === null ) { break; }
                renderItem.id = null;
                renderItem.object = null;
                renderItem.geometry = null;
                renderItem.material = null;
                renderItem.program = null;
                renderItem.group = null;
            }
        }
        return {
            opaque: opaque,
            transparent: transparent,
            init: init,
            push: push,
            unshift: unshift,
            finish: finish,
            sort: sort
        };
    }
    function WebGLRenderLists() {
        var lists = new WeakMap();
        function onSceneDispose( event ) {
            var scene = event.target;
            scene.removeEventListener( 'dispose', onSceneDispose );
            lists.delete( scene );
        }
        function get( scene, camera ) {
            var cameras = lists.get( scene );
            var list;
            if ( cameras === undefined ) {
                list = new WebGLRenderList();
                lists.set( scene, new WeakMap() );
                lists.get( scene ).set( camera, list );
                scene.addEventListener( 'dispose', onSceneDispose );
            } else {
                list = cameras.get( camera );
                if ( list === undefined ) {
                    list = new WebGLRenderList();
                    cameras.set( camera, list );
                }
            }
            return list;
        }
        function dispose() {
            lists = new WeakMap();
        }
        return {
            get: get,
            dispose: dispose
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function UniformsCache() {
        var lights = {};
        return {
            get: function ( light ) {
                if ( lights[ light.id ] !== undefined ) {
                    return lights[ light.id ];
                }
                var uniforms;
                switch ( light.type ) {
                    case 'DirectionalLight':
                        uniforms = {
                            direction: new Vector3(),
                            color: new Color()
                        };
                        break;
                    case 'SpotLight':
                        uniforms = {
                            position: new Vector3(),
                            direction: new Vector3(),
                            color: new Color(),
                            distance: 0,
                            coneCos: 0,
                            penumbraCos: 0,
                            decay: 0
                        };
                        break;
                    case 'PointLight':
                        uniforms = {
                            position: new Vector3(),
                            color: new Color(),
                            distance: 0,
                            decay: 0
                        };
                        break;
                    case 'HemisphereLight':
                        uniforms = {
                            direction: new Vector3(),
                            skyColor: new Color(),
                            groundColor: new Color()
                        };
                        break;
                    case 'RectAreaLight':
                        uniforms = {
                            color: new Color(),
                            position: new Vector3(),
                            halfWidth: new Vector3(),
                            halfHeight: new Vector3()
                        };
                        break;
                }
                lights[ light.id ] = uniforms;
                return uniforms;
            }
        };
    }
    function ShadowUniformsCache() {
        var lights = {};
        return {
            get: function ( light ) {
                if ( lights[ light.id ] !== undefined ) {
                    return lights[ light.id ];
                }
                var uniforms;
                switch ( light.type ) {
                    case 'DirectionalLight':
                        uniforms = {
                            shadowBias: 0,
                            shadowRadius: 1,
                            shadowMapSize: new Vector2()
                        };
                        break;
                    case 'SpotLight':
                        uniforms = {
                            shadowBias: 0,
                            shadowRadius: 1,
                            shadowMapSize: new Vector2()
                        };
                        break;
                    case 'PointLight':
                        uniforms = {
                            shadowBias: 0,
                            shadowRadius: 1,
                            shadowMapSize: new Vector2(),
                            shadowCameraNear: 1,
                            shadowCameraFar: 1000
                        };
                        break;
                    // TODO (abelnation): set RectAreaLight shadow uniforms
                }
                lights[ light.id ] = uniforms;
                return uniforms;
            }
        };
    }
    var nextVersion = 0;
    function shadowCastingLightsFirst( lightA, lightB ) {
        return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 );
    }
    function WebGLLights() {
        var cache = new UniformsCache();
        var shadowCache = ShadowUniformsCache();
        var state = {
            version: 0,
            hash: {
                directionalLength: - 1,
                pointLength: - 1,
                spotLength: - 1,
                rectAreaLength: - 1,
                hemiLength: - 1,
                numDirectionalShadows: - 1,
                numPointShadows: - 1,
                numSpotShadows: - 1
            },
            ambient: [ 0, 0, 0 ],
            probe: [],
            directional: [],
            directionalShadow: [],
            directionalShadowMap: [],
            directionalShadowMatrix: [],
            spot: [],
            spotShadow: [],
            spotShadowMap: [],
            spotShadowMatrix: [],
            rectArea: [],
            point: [],
            pointShadow: [],
            pointShadowMap: [],
            pointShadowMatrix: [],
            hemi: []
        };
        for ( var i = 0; i < 9; i ++ ) { state.probe.push( new Vector3() ); }
        var vector3 = new Vector3();
        var matrix4 = new Matrix4();
        var matrix42 = new Matrix4();
        function setup( lights, shadows, camera ) {
            var r = 0, g = 0, b = 0;
            for ( var i = 0; i < 9; i ++ ) { state.probe[ i ].set( 0, 0, 0 ); }
            var directionalLength = 0;
            var pointLength = 0;
            var spotLength = 0;
            var rectAreaLength = 0;
            var hemiLength = 0;
            var numDirectionalShadows = 0;
            var numPointShadows = 0;
            var numSpotShadows = 0;
            var viewMatrix = camera.matrixWorldInverse;
            lights.sort( shadowCastingLightsFirst );
            for ( var i = 0, l = lights.length; i < l; i ++ ) {
                var light = lights[ i ];
                var color = light.color;
                var intensity = light.intensity;
                var distance = light.distance;
                var shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;
                if ( light.isAmbientLight ) {
                    r += color.r * intensity;
                    g += color.g * intensity;
                    b += color.b * intensity;
                } else if ( light.isLightProbe ) {
                    for ( var j = 0; j < 9; j ++ ) {
                        state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity );
                    }
                } else if ( light.isDirectionalLight ) {
                    var uniforms = cache.get( light );
                    uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
                    uniforms.direction.setFromMatrixPosition( light.matrixWorld );
                    vector3.setFromMatrixPosition( light.target.matrixWorld );
                    uniforms.direction.sub( vector3 );
                    uniforms.direction.transformDirection( viewMatrix );
                    if ( light.castShadow ) {
                        var shadow = light.shadow;
                        var shadowUniforms = shadowCache.get( light );
                        shadowUniforms.shadowBias = shadow.bias;
                        shadowUniforms.shadowRadius = shadow.radius;
                        shadowUniforms.shadowMapSize = shadow.mapSize;
                        state.directionalShadow[ directionalLength ] = shadowUniforms;
                        state.directionalShadowMap[ directionalLength ] = shadowMap;
                        state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
                        numDirectionalShadows ++;
                    }
                    state.directional[ directionalLength ] = uniforms;
                    directionalLength ++;
                } else if ( light.isSpotLight ) {
                    var uniforms = cache.get( light );
                    uniforms.position.setFromMatrixPosition( light.matrixWorld );
                    uniforms.position.applyMatrix4( viewMatrix );
                    uniforms.color.copy( color ).multiplyScalar( intensity );
                    uniforms.distance = distance;
                    uniforms.direction.setFromMatrixPosition( light.matrixWorld );
                    vector3.setFromMatrixPosition( light.target.matrixWorld );
                    uniforms.direction.sub( vector3 );
                    uniforms.direction.transformDirection( viewMatrix );
                    uniforms.coneCos = Math.cos( light.angle );
                    uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
                    uniforms.decay = light.decay;
                    if ( light.castShadow ) {
                        var shadow = light.shadow;
                        var shadowUniforms = shadowCache.get( light );
                        shadowUniforms.shadowBias = shadow.bias;
                        shadowUniforms.shadowRadius = shadow.radius;
                        shadowUniforms.shadowMapSize = shadow.mapSize;
                        state.spotShadow[ spotLength ] = shadowUniforms;
                        state.spotShadowMap[ spotLength ] = shadowMap;
                        state.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
                        numSpotShadows ++;
                    }
                    state.spot[ spotLength ] = uniforms;
                    spotLength ++;
                } else if ( light.isRectAreaLight ) {
                    var uniforms = cache.get( light );
                    // (a) intensity is the total visible light emitted
                    //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
                    // (b) intensity is the brightness of the light
                    uniforms.color.copy( color ).multiplyScalar( intensity );
                    uniforms.position.setFromMatrixPosition( light.matrixWorld );
                    uniforms.position.applyMatrix4( viewMatrix );
                    // extract local rotation of light to derive width/height half vectors
                    matrix42.identity();
                    matrix4.copy( light.matrixWorld );
                    matrix4.premultiply( viewMatrix );
                    matrix42.extractRotation( matrix4 );
                    uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 );
                    uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 );
                    uniforms.halfWidth.applyMatrix4( matrix42 );
                    uniforms.halfHeight.applyMatrix4( matrix42 );
                    // TODO (abelnation): RectAreaLight distance?
                    // uniforms.distance = distance;
                    state.rectArea[ rectAreaLength ] = uniforms;
                    rectAreaLength ++;
                } else if ( light.isPointLight ) {
                    var uniforms = cache.get( light );
                    uniforms.position.setFromMatrixPosition( light.matrixWorld );
                    uniforms.position.applyMatrix4( viewMatrix );
                    uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
                    uniforms.distance = light.distance;
                    uniforms.decay = light.decay;
                    if ( light.castShadow ) {
                        var shadow = light.shadow;
                        var shadowUniforms = shadowCache.get( light );
                        shadowUniforms.shadowBias = shadow.bias;
                        shadowUniforms.shadowRadius = shadow.radius;
                        shadowUniforms.shadowMapSize = shadow.mapSize;
                        shadowUniforms.shadowCameraNear = shadow.camera.near;
                        shadowUniforms.shadowCameraFar = shadow.camera.far;
                        state.pointShadow[ pointLength ] = shadowUniforms;
                        state.pointShadowMap[ pointLength ] = shadowMap;
                        state.pointShadowMatrix[ pointLength ] = light.shadow.matrix;
                        numPointShadows ++;
                    }
                    state.point[ pointLength ] = uniforms;
                    pointLength ++;
                } else if ( light.isHemisphereLight ) {
                    var uniforms = cache.get( light );
                    uniforms.direction.setFromMatrixPosition( light.matrixWorld );
                    uniforms.direction.transformDirection( viewMatrix );
                    uniforms.direction.normalize();
                    uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
                    uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );
                    state.hemi[ hemiLength ] = uniforms;
                    hemiLength ++;
                }
            }
            state.ambient[ 0 ] = r;
            state.ambient[ 1 ] = g;
            state.ambient[ 2 ] = b;
            var hash = state.hash;
            if ( hash.directionalLength !== directionalLength ||
                hash.pointLength !== pointLength ||
                hash.spotLength !== spotLength ||
                hash.rectAreaLength !== rectAreaLength ||
                hash.hemiLength !== hemiLength ||
                hash.numDirectionalShadows !== numDirectionalShadows ||
                hash.numPointShadows !== numPointShadows ||
                hash.numSpotShadows !== numSpotShadows ) {
                state.directional.length = directionalLength;
                state.spot.length = spotLength;
                state.rectArea.length = rectAreaLength;
                state.point.length = pointLength;
                state.hemi.length = hemiLength;
                state.directionalShadow.length = numDirectionalShadows;
                state.directionalShadowMap.length = numDirectionalShadows;
                state.pointShadow.length = numPointShadows;
                state.pointShadowMap.length = numPointShadows;
                state.spotShadow.length = numSpotShadows;
                state.spotShadowMap.length = numSpotShadows;
                state.directionalShadowMatrix.length = numDirectionalShadows;
                state.pointShadowMatrix.length = numPointShadows;
                state.spotShadowMatrix.length = numSpotShadows;
                hash.directionalLength = directionalLength;
                hash.pointLength = pointLength;
                hash.spotLength = spotLength;
                hash.rectAreaLength = rectAreaLength;
                hash.hemiLength = hemiLength;
                hash.numDirectionalShadows = numDirectionalShadows;
                hash.numPointShadows = numPointShadows;
                hash.numSpotShadows = numSpotShadows;
                state.version = nextVersion ++;
            }
        }
        return {
            setup: setup,
            state: state
        };
    }
    /**
     * @author Mugen87 / https://github.com/Mugen87
     */
    function WebGLRenderState() {
        var lights = new WebGLLights();
        var lightsArray = [];
        var shadowsArray = [];
        function init() {
            lightsArray.length = 0;
            shadowsArray.length = 0;
        }
        function pushLight( light ) {
            lightsArray.push( light );
        }
        function pushShadow( shadowLight ) {
            shadowsArray.push( shadowLight );
        }
        function setupLights( camera ) {
            lights.setup( lightsArray, shadowsArray, camera );
        }
        var state = {
            lightsArray: lightsArray,
            shadowsArray: shadowsArray,
            lights: lights
        };
        return {
            init: init,
            state: state,
            setupLights: setupLights,
            pushLight: pushLight,
            pushShadow: pushShadow
        };
    }
    function WebGLRenderStates() {
        var renderStates = new WeakMap();
        function onSceneDispose( event ) {
            var scene = event.target;
            scene.removeEventListener( 'dispose', onSceneDispose );
            renderStates.delete( scene );
        }
        function get( scene, camera ) {
            var renderState;
            if ( renderStates.has( scene ) === false ) {
                renderState = new WebGLRenderState();
                renderStates.set( scene, new WeakMap() );
                renderStates.get( scene ).set( camera, renderState );
                scene.addEventListener( 'dispose', onSceneDispose );
            } else {
                if ( renderStates.get( scene ).has( camera ) === false ) {
                    renderState = new WebGLRenderState();
                    renderStates.get( scene ).set( camera, renderState );
                } else {
                    renderState = renderStates.get( scene ).get( camera );
                }
            }
            return renderState;
        }
        function dispose() {
            renderStates = new WeakMap();
        }
        return {
            get: get,
            dispose: dispose
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     * @author bhouston / https://clara.io
     * @author WestLangley / http://github.com/WestLangley
     *
     * parameters = {
     *
     * opacity: ,
     *
     * map: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias: ,
     *
     * wireframe: ,
     * wireframeLinewidth:
     * }
     */
    function MeshDepthMaterial( parameters ) {
        Material.call( this );
        this.type = 'MeshDepthMaterial';
        this.depthPacking = BasicDepthPacking;
        this.skinning = false;
        this.morphTargets = false;
        this.map = null;
        this.alphaMap = null;
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.fog = false;
        this.setValues( parameters );
    }
    MeshDepthMaterial.prototype = Object.create( Material.prototype );
    MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;
    MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
    MeshDepthMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.depthPacking = source.depthPacking;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.map = source.map;
        this.alphaMap = source.alphaMap;
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        return this;
    };
    /**
     * @author WestLangley / http://github.com/WestLangley
     *
     * parameters = {
     *
     * referencePosition: ,
     * nearDistance: ,
     * farDistance: ,
     *
     * skinning: ,
     * morphTargets: ,
     *
     * map: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias:
     *
     * }
     */
    function MeshDistanceMaterial( parameters ) {
        Material.call( this );
        this.type = 'MeshDistanceMaterial';
        this.referencePosition = new Vector3();
        this.nearDistance = 1;
        this.farDistance = 1000;
        this.skinning = false;
        this.morphTargets = false;
        this.map = null;
        this.alphaMap = null;
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.fog = false;
        this.setValues( parameters );
    }
    MeshDistanceMaterial.prototype = Object.create( Material.prototype );
    MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;
    MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
    MeshDistanceMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.referencePosition.copy( source.referencePosition );
        this.nearDistance = source.nearDistance;
        this.farDistance = source.farDistance;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.map = source.map;
        this.alphaMap = source.alphaMap;
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        return this;
    };
    var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n float mean = 0.0;\n float squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n for ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n #ifdef HORIZONAL_PASS\n vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n mean += distribution.x;\n squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n #else\n float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n mean += depth;\n squared_mean += depth * depth;\n #endif\n }\n mean = mean * HALF_SAMPLE_RATE;\n squared_mean = squared_mean * HALF_SAMPLE_RATE;\n float std_dev = sqrt( squared_mean - mean * mean );\n gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
    var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
    /**
     * @author alteredq / http://alteredqualia.com/
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLShadowMap( _renderer, _objects, maxTextureSize ) {
        var _frustum = new Frustum(),
            _shadowMapSize = new Vector2(),
            _viewportSize = new Vector2(),
            _viewport = new Vector4(),
            _depthMaterials = [],
            _distanceMaterials = [],
            _materialCache = {};
        var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide };
        var shadowMaterialVertical = new ShaderMaterial( {
            defines: {
                SAMPLE_RATE: 2.0 / 8.0,
                HALF_SAMPLE_RATE: 1.0 / 8.0
            },
            uniforms: {
                shadow_pass: { value: null },
                resolution: { value: new Vector2() },
                radius: { value: 4.0 }
            },
            vertexShader: vsm_vert,
            fragmentShader: vsm_frag
        } );
        var shadowMaterialHorizonal = shadowMaterialVertical.clone();
        shadowMaterialHorizonal.defines.HORIZONAL_PASS = 1;
        var fullScreenTri = new BufferGeometry();
        fullScreenTri.setAttribute(
            "position",
            new BufferAttribute(
                new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ),
                3
            )
        );
        var fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical );
        var scope = this;
        this.enabled = false;
        this.autoUpdate = true;
        this.needsUpdate = false;
        this.type = PCFShadowMap;
        this.render = function ( lights, scene, camera ) {
            if ( scope.enabled === false ) { return; }
            if ( scope.autoUpdate === false && scope.needsUpdate === false ) { return; }
            if ( lights.length === 0 ) { return; }
            var currentRenderTarget = _renderer.getRenderTarget();
            var activeCubeFace = _renderer.getActiveCubeFace();
            var activeMipmapLevel = _renderer.getActiveMipmapLevel();
            var _state = _renderer.state;
            // Set GL state for depth map.
            _state.setBlending( NoBlending );
            _state.buffers.color.setClear( 1, 1, 1, 1 );
            _state.buffers.depth.setTest( true );
            _state.setScissorTest( false );
            // render depth map
            for ( var i = 0, il = lights.length; i < il; i ++ ) {
                var light = lights[ i ];
                var shadow = light.shadow;
                if ( shadow === undefined ) {
                    console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
                    continue;
                }
                _shadowMapSize.copy( shadow.mapSize );
                var shadowFrameExtents = shadow.getFrameExtents();
                _shadowMapSize.multiply( shadowFrameExtents );
                _viewportSize.copy( shadow.mapSize );
                if ( _shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize ) {
                    if ( _shadowMapSize.x > maxTextureSize ) {
                        _viewportSize.x = Math.floor( maxTextureSize / shadowFrameExtents.x );
                        _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
                        shadow.mapSize.x = _viewportSize.x;
                    }
                    if ( _shadowMapSize.y > maxTextureSize ) {
                        _viewportSize.y = Math.floor( maxTextureSize / shadowFrameExtents.y );
                        _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
                        shadow.mapSize.y = _viewportSize.y;
                    }
                }
                if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {
                    var pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat };
                    shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
                    shadow.map.texture.name = light.name + ".shadowMap";
                    shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
                    shadow.camera.updateProjectionMatrix();
                }
                if ( shadow.map === null ) {
                    var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };
                    shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
                    shadow.map.texture.name = light.name + ".shadowMap";
                    shadow.camera.updateProjectionMatrix();
                }
                _renderer.setRenderTarget( shadow.map );
                _renderer.clear();
                var viewportCount = shadow.getViewportCount();
                for ( var vp = 0; vp < viewportCount; vp ++ ) {
                    var viewport = shadow.getViewport( vp );
                    _viewport.set(
                        _viewportSize.x * viewport.x,
                        _viewportSize.y * viewport.y,
                        _viewportSize.x * viewport.z,
                        _viewportSize.y * viewport.w
                    );
                    _state.viewport( _viewport );
                    shadow.updateMatrices( light, vp );
                    _frustum = shadow.getFrustum();
                    renderObject( scene, camera, shadow.camera, light, this.type );
                }
                // do blur pass for VSM
                if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {
                    VSMPass( shadow, camera );
                }
            }
            scope.needsUpdate = false;
            _renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel );
        };
        function VSMPass( shadow, camera ) {
            var geometry = _objects.update( fullScreenMesh );
            // vertical pass
            shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
            shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
            shadowMaterialVertical.uniforms.radius.value = shadow.radius;
            _renderer.setRenderTarget( shadow.mapPass );
            _renderer.clear();
            _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null );
            // horizonal pass
            shadowMaterialHorizonal.uniforms.shadow_pass.value = shadow.mapPass.texture;
            shadowMaterialHorizonal.uniforms.resolution.value = shadow.mapSize;
            shadowMaterialHorizonal.uniforms.radius.value = shadow.radius;
            _renderer.setRenderTarget( shadow.map );
            _renderer.clear();
            _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizonal, fullScreenMesh, null );
        }
        function getDepthMaterialVariant( useMorphing, useSkinning, useInstancing ) {
            var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;
            var material = _depthMaterials[ index ];
            if ( material === undefined ) {
                material = new MeshDepthMaterial( {
                    depthPacking: RGBADepthPacking,
                    morphTargets: useMorphing,
                    skinning: useSkinning
                } );
                _depthMaterials[ index ] = material;
            }
            return material;
        }
        function getDistanceMaterialVariant( useMorphing, useSkinning, useInstancing ) {
            var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;
            var material = _distanceMaterials[ index ];
            if ( material === undefined ) {
                material = new MeshDistanceMaterial( {
                    morphTargets: useMorphing,
                    skinning: useSkinning
                } );
                _distanceMaterials[ index ] = material;
            }
            return material;
        }
        function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) {
            var result = null;
            var getMaterialVariant = getDepthMaterialVariant;
            var customMaterial = object.customDepthMaterial;
            if ( light.isPointLight === true ) {
                getMaterialVariant = getDistanceMaterialVariant;
                customMaterial = object.customDistanceMaterial;
            }
            if ( customMaterial === undefined ) {
                var useMorphing = false;
                if ( material.morphTargets === true ) {
                    useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;
                }
                var useSkinning = false;
                if ( object.isSkinnedMesh === true ) {
                    if ( material.skinning === true ) {
                        useSkinning = true;
                    } else {
                        console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );
                    }
                }
                var useInstancing = object.isInstancedMesh === true;
                result = getMaterialVariant( useMorphing, useSkinning, useInstancing );
            } else {
                result = customMaterial;
            }
            if ( _renderer.localClippingEnabled &&
                    material.clipShadows === true &&
                    material.clippingPlanes.length !== 0 ) {
                // in this case we need a unique material instance reflecting the
                // appropriate state
                var keyA = result.uuid, keyB = material.uuid;
                var materialsForVariant = _materialCache[ keyA ];
                if ( materialsForVariant === undefined ) {
                    materialsForVariant = {};
                    _materialCache[ keyA ] = materialsForVariant;
                }
                var cachedMaterial = materialsForVariant[ keyB ];
                if ( cachedMaterial === undefined ) {
                    cachedMaterial = result.clone();
                    materialsForVariant[ keyB ] = cachedMaterial;
                }
                result = cachedMaterial;
            }
            result.visible = material.visible;
            result.wireframe = material.wireframe;
            if ( type === VSMShadowMap ) {
                result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side;
            } else {
                result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ];
            }
            result.clipShadows = material.clipShadows;
            result.clippingPlanes = material.clippingPlanes;
            result.clipIntersection = material.clipIntersection;
            result.wireframeLinewidth = material.wireframeLinewidth;
            result.linewidth = material.linewidth;
            if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) {
                result.referencePosition.setFromMatrixPosition( light.matrixWorld );
                result.nearDistance = shadowCameraNear;
                result.farDistance = shadowCameraFar;
            }
            return result;
        }
        function renderObject( object, camera, shadowCamera, light, type ) {
            if ( object.visible === false ) { return; }
            var visible = object.layers.test( camera.layers );
            if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {
                if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {
                    object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );
                    var geometry = _objects.update( object );
                    var material = object.material;
                    if ( Array.isArray( material ) ) {
                        var groups = geometry.groups;
                        for ( var k = 0, kl = groups.length; k < kl; k ++ ) {
                            var group = groups[ k ];
                            var groupMaterial = material[ group.materialIndex ];
                            if ( groupMaterial && groupMaterial.visible ) {
                                var depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type );
                                _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );
                            }
                        }
                    } else if ( material.visible ) {
                        var depthMaterial = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type );
                        _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );
                    }
                }
            }
            var children = object.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                renderObject( children[ i ], camera, shadowCamera, light, type );
            }
        }
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLState( gl, extensions, capabilities ) {
        var isWebGL2 = capabilities.isWebGL2;
        function ColorBuffer() {
            var locked = false;
            var color = new Vector4();
            var currentColorMask = null;
            var currentColorClear = new Vector4( 0, 0, 0, 0 );
            return {
                setMask: function ( colorMask ) {
                    if ( currentColorMask !== colorMask && ! locked ) {
                        gl.colorMask( colorMask, colorMask, colorMask, colorMask );
                        currentColorMask = colorMask;
                    }
                },
                setLocked: function ( lock ) {
                    locked = lock;
                },
                setClear: function ( r, g, b, a, premultipliedAlpha ) {
                    if ( premultipliedAlpha === true ) {
                        r *= a; g *= a; b *= a;
                    }
                    color.set( r, g, b, a );
                    if ( currentColorClear.equals( color ) === false ) {
                        gl.clearColor( r, g, b, a );
                        currentColorClear.copy( color );
                    }
                },
                reset: function () {
                    locked = false;
                    currentColorMask = null;
                    currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state
                }
            };
        }
        function DepthBuffer() {
            var locked = false;
            var currentDepthMask = null;
            var currentDepthFunc = null;
            var currentDepthClear = null;
            return {
                setTest: function ( depthTest ) {
                    if ( depthTest ) {
                        enable( 2929 );
                    } else {
                        disable( 2929 );
                    }
                },
                setMask: function ( depthMask ) {
                    if ( currentDepthMask !== depthMask && ! locked ) {
                        gl.depthMask( depthMask );
                        currentDepthMask = depthMask;
                    }
                },
                setFunc: function ( depthFunc ) {
                    if ( currentDepthFunc !== depthFunc ) {
                        if ( depthFunc ) {
                            switch ( depthFunc ) {
                                case NeverDepth:
                                    gl.depthFunc( 512 );
                                    break;
                                case AlwaysDepth:
                                    gl.depthFunc( 519 );
                                    break;
                                case LessDepth:
                                    gl.depthFunc( 513 );
                                    break;
                                case LessEqualDepth:
                                    gl.depthFunc( 515 );
                                    break;
                                case EqualDepth:
                                    gl.depthFunc( 514 );
                                    break;
                                case GreaterEqualDepth:
                                    gl.depthFunc( 518 );
                                    break;
                                case GreaterDepth:
                                    gl.depthFunc( 516 );
                                    break;
                                case NotEqualDepth:
                                    gl.depthFunc( 517 );
                                    break;
                                default:
                                    gl.depthFunc( 515 );
                            }
                        } else {
                            gl.depthFunc( 515 );
                        }
                        currentDepthFunc = depthFunc;
                    }
                },
                setLocked: function ( lock ) {
                    locked = lock;
                },
                setClear: function ( depth ) {
                    if ( currentDepthClear !== depth ) {
                        gl.clearDepth( depth );
                        currentDepthClear = depth;
                    }
                },
                reset: function () {
                    locked = false;
                    currentDepthMask = null;
                    currentDepthFunc = null;
                    currentDepthClear = null;
                }
            };
        }
        function StencilBuffer() {
            var locked = false;
            var currentStencilMask = null;
            var currentStencilFunc = null;
            var currentStencilRef = null;
            var currentStencilFuncMask = null;
            var currentStencilFail = null;
            var currentStencilZFail = null;
            var currentStencilZPass = null;
            var currentStencilClear = null;
            return {
                setTest: function ( stencilTest ) {
                    if ( ! locked ) {
                        if ( stencilTest ) {
                            enable( 2960 );
                        } else {
                            disable( 2960 );
                        }
                    }
                },
                setMask: function ( stencilMask ) {
                    if ( currentStencilMask !== stencilMask && ! locked ) {
                        gl.stencilMask( stencilMask );
                        currentStencilMask = stencilMask;
                    }
                },
                setFunc: function ( stencilFunc, stencilRef, stencilMask ) {
                    if ( currentStencilFunc !== stencilFunc ||
                     currentStencilRef     !== stencilRef     ||
                     currentStencilFuncMask !== stencilMask ) {
                        gl.stencilFunc( stencilFunc, stencilRef, stencilMask );
                        currentStencilFunc = stencilFunc;
                        currentStencilRef = stencilRef;
                        currentStencilFuncMask = stencilMask;
                    }
                },
                setOp: function ( stencilFail, stencilZFail, stencilZPass ) {
                    if ( currentStencilFail     !== stencilFail     ||
                     currentStencilZFail !== stencilZFail ||
                     currentStencilZPass !== stencilZPass ) {
                        gl.stencilOp( stencilFail, stencilZFail, stencilZPass );
                        currentStencilFail = stencilFail;
                        currentStencilZFail = stencilZFail;
                        currentStencilZPass = stencilZPass;
                    }
                },
                setLocked: function ( lock ) {
                    locked = lock;
                },
                setClear: function ( stencil ) {
                    if ( currentStencilClear !== stencil ) {
                        gl.clearStencil( stencil );
                        currentStencilClear = stencil;
                    }
                },
                reset: function () {
                    locked = false;
                    currentStencilMask = null;
                    currentStencilFunc = null;
                    currentStencilRef = null;
                    currentStencilFuncMask = null;
                    currentStencilFail = null;
                    currentStencilZFail = null;
                    currentStencilZPass = null;
                    currentStencilClear = null;
                }
            };
        }
        //
        var colorBuffer = new ColorBuffer();
        var depthBuffer = new DepthBuffer();
        var stencilBuffer = new StencilBuffer();
        var maxVertexAttributes = gl.getParameter( 34921 );
        var newAttributes = new Uint8Array( maxVertexAttributes );
        var enabledAttributes = new Uint8Array( maxVertexAttributes );
        var attributeDivisors = new Uint8Array( maxVertexAttributes );
        var enabledCapabilities = {};
        var currentProgram = null;
        var currentBlendingEnabled = null;
        var currentBlending = null;
        var currentBlendEquation = null;
        var currentBlendSrc = null;
        var currentBlendDst = null;
        var currentBlendEquationAlpha = null;
        var currentBlendSrcAlpha = null;
        var currentBlendDstAlpha = null;
        var currentPremultipledAlpha = false;
        var currentFlipSided = null;
        var currentCullFace = null;
        var currentLineWidth = null;
        var currentPolygonOffsetFactor = null;
        var currentPolygonOffsetUnits = null;
        var maxTextures = gl.getParameter( 35661 );
        var lineWidthAvailable = false;
        var version = 0;
        var glVersion = gl.getParameter( 7938 );
        if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) {
            version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] );
            lineWidthAvailable = ( version >= 1.0 );
        } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) {
            version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] );
            lineWidthAvailable = ( version >= 2.0 );
        }
        var currentTextureSlot = null;
        var currentBoundTextures = {};
        var currentScissor = new Vector4();
        var currentViewport = new Vector4();
        function createTexture( type, target, count ) {
            var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
            var texture = gl.createTexture();
            gl.bindTexture( type, texture );
            gl.texParameteri( type, 10241, 9728 );
            gl.texParameteri( type, 10240, 9728 );
            for ( var i = 0; i < count; i ++ ) {
                gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data );
            }
            return texture;
        }
        var emptyTextures = {};
        emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 );
        emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 );
        // init
        colorBuffer.setClear( 0, 0, 0, 1 );
        depthBuffer.setClear( 1 );
        stencilBuffer.setClear( 0 );
        enable( 2929 );
        depthBuffer.setFunc( LessEqualDepth );
        setFlipSided( false );
        setCullFace( CullFaceBack );
        enable( 2884 );
        setBlending( NoBlending );
        //
        function initAttributes() {
            for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {
                newAttributes[ i ] = 0;
            }
        }
        function enableAttribute( attribute ) {
            enableAttributeAndDivisor( attribute, 0 );
        }
        function enableAttributeAndDivisor( attribute, meshPerAttribute ) {
            newAttributes[ attribute ] = 1;
            if ( enabledAttributes[ attribute ] === 0 ) {
                gl.enableVertexAttribArray( attribute );
                enabledAttributes[ attribute ] = 1;
            }
            if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {
                var extension = isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' );
                extension[ isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute );
                attributeDivisors[ attribute ] = meshPerAttribute;
            }
        }
        function disableUnusedAttributes() {
            for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) {
                if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {
                    gl.disableVertexAttribArray( i );
                    enabledAttributes[ i ] = 0;
                }
            }
        }
        function vertexAttribPointer( index, size, type, normalized, stride, offset ) {
            if ( isWebGL2 === true && ( type === 5124 || type === 5125 ) ) {
                gl.vertexAttribIPointer( index, size, type, normalized, stride, offset );
            } else {
                gl.vertexAttribPointer( index, size, type, normalized, stride, offset );
            }
        }
        function enable( id ) {
            if ( enabledCapabilities[ id ] !== true ) {
                gl.enable( id );
                enabledCapabilities[ id ] = true;
            }
        }
        function disable( id ) {
            if ( enabledCapabilities[ id ] !== false ) {
                gl.disable( id );
                enabledCapabilities[ id ] = false;
            }
        }
        function useProgram( program ) {
            if ( currentProgram !== program ) {
                gl.useProgram( program );
                currentProgram = program;
                return true;
            }
            return false;
        }
        var equationToGL = {};
        equationToGL[ AddEquation ] = 32774;
        equationToGL[ SubtractEquation ] = 32778;
        equationToGL[ ReverseSubtractEquation ] = 32779;
        if ( isWebGL2 ) {
            equationToGL[ MinEquation ] = 32775;
            equationToGL[ MaxEquation ] = 32776;
        } else {
            var extension = extensions.get( 'EXT_blend_minmax' );
            if ( extension !== null ) {
                equationToGL[ MinEquation ] = extension.MIN_EXT;
                equationToGL[ MaxEquation ] = extension.MAX_EXT;
            }
        }
        var factorToGL = {};
        factorToGL[ ZeroFactor ] = 0;
        factorToGL[ OneFactor ] = 1;
        factorToGL[ SrcColorFactor ] = 768;
        factorToGL[ SrcAlphaFactor ] = 770;
        factorToGL[ SrcAlphaSaturateFactor ] = 776;
        factorToGL[ DstColorFactor ] = 774;
        factorToGL[ DstAlphaFactor ] = 772;
        factorToGL[ OneMinusSrcColorFactor ] = 769;
        factorToGL[ OneMinusSrcAlphaFactor ] = 771;
        factorToGL[ OneMinusDstColorFactor ] = 775;
        factorToGL[ OneMinusDstAlphaFactor ] = 773;
        function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {
            if ( blending === NoBlending ) {
                if ( currentBlendingEnabled ) {
                    disable( 3042 );
                    currentBlendingEnabled = false;
                }
                return;
            }
            if ( ! currentBlendingEnabled ) {
                enable( 3042 );
                currentBlendingEnabled = true;
            }
            if ( blending !== CustomBlending ) {
                if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {
                    if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) {
                        gl.blendEquation( 32774 );
                        currentBlendEquation = AddEquation;
                        currentBlendEquationAlpha = AddEquation;
                    }
                    if ( premultipliedAlpha ) {
                        switch ( blending ) {
                            case NormalBlending:
                                gl.blendFuncSeparate( 1, 771, 1, 771 );
                                break;
                            case AdditiveBlending:
                                gl.blendFunc( 1, 1 );
                                break;
                            case SubtractiveBlending:
                                gl.blendFuncSeparate( 0, 0, 769, 771 );
                                break;
                            case MultiplyBlending:
                                gl.blendFuncSeparate( 0, 768, 0, 770 );
                                break;
                            default:
                                console.error( 'THREE.WebGLState: Invalid blending: ', blending );
                                break;
                        }
                    } else {
                        switch ( blending ) {
                            case NormalBlending:
                                gl.blendFuncSeparate( 770, 771, 1, 771 );
                                break;
                            case AdditiveBlending:
                                gl.blendFunc( 770, 1 );
                                break;
                            case SubtractiveBlending:
                                gl.blendFunc( 0, 769 );
                                break;
                            case MultiplyBlending:
                                gl.blendFunc( 0, 768 );
                                break;
                            default:
                                console.error( 'THREE.WebGLState: Invalid blending: ', blending );
                                break;
                        }
                    }
                    currentBlendSrc = null;
                    currentBlendDst = null;
                    currentBlendSrcAlpha = null;
                    currentBlendDstAlpha = null;
                    currentBlending = blending;
                    currentPremultipledAlpha = premultipliedAlpha;
                }
                return;
            }
            // custom blending
            blendEquationAlpha = blendEquationAlpha || blendEquation;
            blendSrcAlpha = blendSrcAlpha || blendSrc;
            blendDstAlpha = blendDstAlpha || blendDst;
            if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {
                gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] );
                currentBlendEquation = blendEquation;
                currentBlendEquationAlpha = blendEquationAlpha;
            }
            if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {
                gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] );
                currentBlendSrc = blendSrc;
                currentBlendDst = blendDst;
                currentBlendSrcAlpha = blendSrcAlpha;
                currentBlendDstAlpha = blendDstAlpha;
            }
            currentBlending = blending;
            currentPremultipledAlpha = null;
        }
        function setMaterial( material, frontFaceCW ) {
            material.side === DoubleSide
                ? disable( 2884 )
                : enable( 2884 );
            var flipSided = ( material.side === BackSide );
            if ( frontFaceCW ) { flipSided = ! flipSided; }
            setFlipSided( flipSided );
            ( material.blending === NormalBlending && material.transparent === false )
                ? setBlending( NoBlending )
                : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
            depthBuffer.setFunc( material.depthFunc );
            depthBuffer.setTest( material.depthTest );
            depthBuffer.setMask( material.depthWrite );
            colorBuffer.setMask( material.colorWrite );
            var stencilWrite = material.stencilWrite;
            stencilBuffer.setTest( stencilWrite );
            if ( stencilWrite ) {
                stencilBuffer.setMask( material.stencilWriteMask );
                stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask );
                stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass );
            }
            setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
        }
        //
        function setFlipSided( flipSided ) {
            if ( currentFlipSided !== flipSided ) {
                if ( flipSided ) {
                    gl.frontFace( 2304 );
                } else {
                    gl.frontFace( 2305 );
                }
                currentFlipSided = flipSided;
            }
        }
        function setCullFace( cullFace ) {
            if ( cullFace !== CullFaceNone ) {
                enable( 2884 );
                if ( cullFace !== currentCullFace ) {
                    if ( cullFace === CullFaceBack ) {
                        gl.cullFace( 1029 );
                    } else if ( cullFace === CullFaceFront ) {
                        gl.cullFace( 1028 );
                    } else {
                        gl.cullFace( 1032 );
                    }
                }
            } else {
                disable( 2884 );
            }
            currentCullFace = cullFace;
        }
        function setLineWidth( width ) {
            if ( width !== currentLineWidth ) {
                if ( lineWidthAvailable ) { gl.lineWidth( width ); }
                currentLineWidth = width;
            }
        }
        function setPolygonOffset( polygonOffset, factor, units ) {
            if ( polygonOffset ) {
                enable( 32823 );
                if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {
                    gl.polygonOffset( factor, units );
                    currentPolygonOffsetFactor = factor;
                    currentPolygonOffsetUnits = units;
                }
            } else {
                disable( 32823 );
            }
        }
        function setScissorTest( scissorTest ) {
            if ( scissorTest ) {
                enable( 3089 );
            } else {
                disable( 3089 );
            }
        }
        // texture
        function activeTexture( webglSlot ) {
            if ( webglSlot === undefined ) { webglSlot = 33984 + maxTextures - 1; }
            if ( currentTextureSlot !== webglSlot ) {
                gl.activeTexture( webglSlot );
                currentTextureSlot = webglSlot;
            }
        }
        function bindTexture( webglType, webglTexture ) {
            if ( currentTextureSlot === null ) {
                activeTexture();
            }
            var boundTexture = currentBoundTextures[ currentTextureSlot ];
            if ( boundTexture === undefined ) {
                boundTexture = { type: undefined, texture: undefined };
                currentBoundTextures[ currentTextureSlot ] = boundTexture;
            }
            if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {
                gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );
                boundTexture.type = webglType;
                boundTexture.texture = webglTexture;
            }
        }
        function unbindTexture() {
            var boundTexture = currentBoundTextures[ currentTextureSlot ];
            if ( boundTexture !== undefined && boundTexture.type !== undefined ) {
                gl.bindTexture( boundTexture.type, null );
                boundTexture.type = undefined;
                boundTexture.texture = undefined;
            }
        }
        function compressedTexImage2D() {
            try {
                gl.compressedTexImage2D.apply( gl, arguments );
            } catch ( error ) {
                console.error( 'THREE.WebGLState:', error );
            }
        }
        function texImage2D() {
            try {
                gl.texImage2D.apply( gl, arguments );
            } catch ( error ) {
                console.error( 'THREE.WebGLState:', error );
            }
        }
        function texImage3D() {
            try {
                gl.texImage3D.apply( gl, arguments );
            } catch ( error ) {
                console.error( 'THREE.WebGLState:', error );
            }
        }
        //
        function scissor( scissor ) {
            if ( currentScissor.equals( scissor ) === false ) {
                gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
                currentScissor.copy( scissor );
            }
        }
        function viewport( viewport ) {
            if ( currentViewport.equals( viewport ) === false ) {
                gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
                currentViewport.copy( viewport );
            }
        }
        //
        function reset() {
            for ( var i = 0; i < enabledAttributes.length; i ++ ) {
                if ( enabledAttributes[ i ] === 1 ) {
                    gl.disableVertexAttribArray( i );
                    enabledAttributes[ i ] = 0;
                }
            }
            enabledCapabilities = {};
            currentTextureSlot = null;
            currentBoundTextures = {};
            currentProgram = null;
            currentBlending = null;
            currentFlipSided = null;
            currentCullFace = null;
            colorBuffer.reset();
            depthBuffer.reset();
            stencilBuffer.reset();
        }
        return {
            buffers: {
                color: colorBuffer,
                depth: depthBuffer,
                stencil: stencilBuffer
            },
            initAttributes: initAttributes,
            enableAttribute: enableAttribute,
            enableAttributeAndDivisor: enableAttributeAndDivisor,
            disableUnusedAttributes: disableUnusedAttributes,
            vertexAttribPointer: vertexAttribPointer,
            enable: enable,
            disable: disable,
            useProgram: useProgram,
            setBlending: setBlending,
            setMaterial: setMaterial,
            setFlipSided: setFlipSided,
            setCullFace: setCullFace,
            setLineWidth: setLineWidth,
            setPolygonOffset: setPolygonOffset,
            setScissorTest: setScissorTest,
            activeTexture: activeTexture,
            bindTexture: bindTexture,
            unbindTexture: unbindTexture,
            compressedTexImage2D: compressedTexImage2D,
            texImage2D: texImage2D,
            texImage3D: texImage3D,
            scissor: scissor,
            viewport: viewport,
            reset: reset
        };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) {
        var isWebGL2 = capabilities.isWebGL2;
        var maxTextures = capabilities.maxTextures;
        var maxCubemapSize = capabilities.maxCubemapSize;
        var maxTextureSize = capabilities.maxTextureSize;
        var maxSamples = capabilities.maxSamples;
        var _videoTextures = new WeakMap();
        var _canvas;
        // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
        // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
        // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
        var useOffscreenCanvas = false;
        try {
            useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined'
                && ( new OffscreenCanvas( 1, 1 ).getContext( "2d" ) ) !== null;
        } catch ( err ) {
            // Ignore any errors
        }
        function createCanvas( width, height ) {
            // Use OffscreenCanvas when available. Specially needed in web workers
            return useOffscreenCanvas ?
                new OffscreenCanvas( width, height ) :
                document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
        }
        function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) {
            var scale = 1;
            // handle case if texture exceeds max size
            if ( image.width > maxSize || image.height > maxSize ) {
                scale = maxSize / Math.max( image.width, image.height );
            }
            // only perform resize if necessary
            if ( scale < 1 || needsPowerOfTwo === true ) {
                // only perform resize for certain image types
                if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
                    ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
                    ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
                    var floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor;
                    var width = floor( scale * image.width );
                    var height = floor( scale * image.height );
                    if ( _canvas === undefined ) { _canvas = createCanvas( width, height ); }
                    // cube textures can't reuse the same canvas
                    var canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas;
                    canvas.width = width;
                    canvas.height = height;
                    var context = canvas.getContext( '2d' );
                    context.drawImage( image, 0, 0, width, height );
                    console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' );
                    return canvas;
                } else {
                    if ( 'data' in image ) {
                        console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' );
                    }
                    return image;
                }
            }
            return image;
        }
        function isPowerOfTwo( image ) {
            return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height );
        }
        function textureNeedsPowerOfTwo( texture ) {
            if ( isWebGL2 ) { return false; }
            return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
                ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );
        }
        function textureNeedsGenerateMipmaps( texture, supportsMips ) {
            return texture.generateMipmaps && supportsMips &&
                texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
        }
        function generateMipmap( target, texture, width, height ) {
            _gl.generateMipmap( target );
            var textureProperties = properties.get( texture );
            // Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11
            textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E;
        }
        function getInternalFormat( internalFormatName, glFormat, glType ) {
            if ( isWebGL2 === false ) { return glFormat; }
            if ( internalFormatName !== null ) {
                if ( _gl[ internalFormatName ] !== undefined ) { return _gl[ internalFormatName ]; }
                console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' );
            }
            var internalFormat = glFormat;
            if ( glFormat === 6403 ) {
                if ( glType === 5126 ) { internalFormat = 33326; }
                if ( glType === 5131 ) { internalFormat = 33325; }
                if ( glType === 5121 ) { internalFormat = 33321; }
            }
            if ( glFormat === 6407 ) {
                if ( glType === 5126 ) { internalFormat = 34837; }
                if ( glType === 5131 ) { internalFormat = 34843; }
                if ( glType === 5121 ) { internalFormat = 32849; }
            }
            if ( glFormat === 6408 ) {
                if ( glType === 5126 ) { internalFormat = 34836; }
                if ( glType === 5131 ) { internalFormat = 34842; }
                if ( glType === 5121 ) { internalFormat = 32856; }
            }
            if ( internalFormat === 33325 || internalFormat === 33326 ||
                internalFormat === 34842 || internalFormat === 34836 ) {
                extensions.get( 'EXT_color_buffer_float' );
            }
            return internalFormat;
        }
        // Fallback filters for non-power-of-2 textures
        function filterFallback( f ) {
            if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) {
                return 9728;
            }
            return 9729;
        }
        //
        function onTextureDispose( event ) {
            var texture = event.target;
            texture.removeEventListener( 'dispose', onTextureDispose );
            deallocateTexture( texture );
            if ( texture.isVideoTexture ) {
                _videoTextures.delete( texture );
            }
            info.memory.textures --;
        }
        function onRenderTargetDispose( event ) {
            var renderTarget = event.target;
            renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );
            deallocateRenderTarget( renderTarget );
            info.memory.textures --;
        }
        //
        function deallocateTexture( texture ) {
            var textureProperties = properties.get( texture );
            if ( textureProperties.__webglInit === undefined ) { return; }
            _gl.deleteTexture( textureProperties.__webglTexture );
            properties.remove( texture );
        }
        function deallocateRenderTarget( renderTarget ) {
            var renderTargetProperties = properties.get( renderTarget );
            var textureProperties = properties.get( renderTarget.texture );
            if ( ! renderTarget ) { return; }
            if ( textureProperties.__webglTexture !== undefined ) {
                _gl.deleteTexture( textureProperties.__webglTexture );
            }
            if ( renderTarget.depthTexture ) {
                renderTarget.depthTexture.dispose();
            }
            if ( renderTarget.isWebGLCubeRenderTarget ) {
                for ( var i = 0; i < 6; i ++ ) {
                    _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
                    if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); }
                }
            } else {
                _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
                if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); }
                if ( renderTargetProperties.__webglMultisampledFramebuffer ) { _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); }
                if ( renderTargetProperties.__webglColorRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer ); }
                if ( renderTargetProperties.__webglDepthRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); }
            }
            properties.remove( renderTarget.texture );
            properties.remove( renderTarget );
        }
        //
        var textureUnits = 0;
        function resetTextureUnits() {
            textureUnits = 0;
        }
        function allocateTextureUnit() {
            var textureUnit = textureUnits;
            if ( textureUnit >= maxTextures ) {
                console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures );
            }
            textureUnits += 1;
            return textureUnit;
        }
        //
        function setTexture2D( texture, slot ) {
            var textureProperties = properties.get( texture );
            if ( texture.isVideoTexture ) { updateVideoTexture( texture ); }
            if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
                var image = texture.image;
                if ( image === undefined ) {
                    console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' );
                } else if ( image.complete === false ) {
                    console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' );
                } else {
                    uploadTexture( textureProperties, texture, slot );
                    return;
                }
            }
            state.activeTexture( 33984 + slot );
            state.bindTexture( 3553, textureProperties.__webglTexture );
        }
        function setTexture2DArray( texture, slot ) {
            var textureProperties = properties.get( texture );
            if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
                uploadTexture( textureProperties, texture, slot );
                return;
            }
            state.activeTexture( 33984 + slot );
            state.bindTexture( 35866, textureProperties.__webglTexture );
        }
        function setTexture3D( texture, slot ) {
            var textureProperties = properties.get( texture );
            if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
                uploadTexture( textureProperties, texture, slot );
                return;
            }
            state.activeTexture( 33984 + slot );
            state.bindTexture( 32879, textureProperties.__webglTexture );
        }
        function setTextureCube( texture, slot ) {
            if ( texture.image.length !== 6 ) { return; }
            var textureProperties = properties.get( texture );
            if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
                initTexture( textureProperties, texture );
                state.activeTexture( 33984 + slot );
                state.bindTexture( 34067, textureProperties.__webglTexture );
                _gl.pixelStorei( 37440, texture.flipY );
                var isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) );
                var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );
                var cubeImage = [];
                for ( var i = 0; i < 6; i ++ ) {
                    if ( ! isCompressed && ! isDataTexture ) {
                        cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize );
                    } else {
                        cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];
                    }
                }
                var image = cubeImage[ 0 ],
                    supportsMips = isPowerOfTwo( image ) || isWebGL2,
                    glFormat = utils.convert( texture.format ),
                    glType = utils.convert( texture.type ),
                    glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );
                setTextureParameters( 34067, texture, supportsMips );
                var mipmaps;
                if ( isCompressed ) {
                    for ( var i = 0; i < 6; i ++ ) {
                        mipmaps = cubeImage[ i ].mipmaps;
                        for ( var j = 0; j < mipmaps.length; j ++ ) {
                            var mipmap = mipmaps[ j ];
                            if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {
                                if ( glFormat !== null ) {
                                    state.compressedTexImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );
                                } else {
                                    console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' );
                                }
                            } else {
                                state.texImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
                            }
                        }
                    }
                    textureProperties.__maxMipLevel = mipmaps.length - 1;
                } else {
                    mipmaps = texture.mipmaps;
                    for ( var i = 0; i < 6; i ++ ) {
                        if ( isDataTexture ) {
                            state.texImage2D( 34069 + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );
                            for ( var j = 0; j < mipmaps.length; j ++ ) {
                                var mipmap = mipmaps[ j ];
                                var mipmapImage = mipmap.image[ i ].image;
                                state.texImage2D( 34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data );
                            }
                        } else {
                            state.texImage2D( 34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] );
                            for ( var j = 0; j < mipmaps.length; j ++ ) {
                                var mipmap = mipmaps[ j ];
                                state.texImage2D( 34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] );
                            }
                        }
                    }
                    textureProperties.__maxMipLevel = mipmaps.length;
                }
                if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {
                    // We assume images for cube map have the same size.
                    generateMipmap( 34067, texture, image.width, image.height );
                }
                textureProperties.__version = texture.version;
                if ( texture.onUpdate ) { texture.onUpdate( texture ); }
            } else {
                state.activeTexture( 33984 + slot );
                state.bindTexture( 34067, textureProperties.__webglTexture );
            }
        }
        function setTextureCubeDynamic( texture, slot ) {
            state.activeTexture( 33984 + slot );
            state.bindTexture( 34067, properties.get( texture ).__webglTexture );
        }
        var wrappingToGL = {};
        wrappingToGL[ RepeatWrapping ] = 10497;
        wrappingToGL[ ClampToEdgeWrapping ] = 33071;
        wrappingToGL[ MirroredRepeatWrapping ] = 33648;
        var filterToGL = {};
        filterToGL[ NearestFilter ] = 9728;
        filterToGL[ NearestMipmapNearestFilter ] = 9984;
        filterToGL[ NearestMipmapLinearFilter ] = 9986;
        filterToGL[ LinearFilter ] = 9729;
        filterToGL[ LinearMipmapNearestFilter ] = 9985;
        filterToGL[ LinearMipmapLinearFilter ] = 9987;
        function setTextureParameters( textureType, texture, supportsMips ) {
            if ( supportsMips ) {
                _gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] );
                _gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] );
                if ( textureType === 32879 || textureType === 35866 ) {
                    _gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] );
                }
                _gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] );
                _gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] );
            } else {
                _gl.texParameteri( textureType, 10242, 33071 );
                _gl.texParameteri( textureType, 10243, 33071 );
                if ( textureType === 32879 || textureType === 35866 ) {
                    _gl.texParameteri( textureType, 32882, 33071 );
                }
                if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {
                    console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' );
                }
                _gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) );
                _gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) );
                if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {
                    console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' );
                }
            }
            var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
            if ( extension ) {
                if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) { return; }
                if ( texture.type === HalfFloatType && ( isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) { return; }
                if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {
                    _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
                    properties.get( texture ).__currentAnisotropy = texture.anisotropy;
                }
            }
        }
        function initTexture( textureProperties, texture ) {
            if ( textureProperties.__webglInit === undefined ) {
                textureProperties.__webglInit = true;
                texture.addEventListener( 'dispose', onTextureDispose );
                textureProperties.__webglTexture = _gl.createTexture();
                info.memory.textures ++;
            }
        }
        function uploadTexture( textureProperties, texture, slot ) {
            var textureType = 3553;
            if ( texture.isDataTexture2DArray ) { textureType = 35866; }
            if ( texture.isDataTexture3D ) { textureType = 32879; }
            initTexture( textureProperties, texture );
            state.activeTexture( 33984 + slot );
            state.bindTexture( textureType, textureProperties.__webglTexture );
            _gl.pixelStorei( 37440, texture.flipY );
            _gl.pixelStorei( 37441, texture.premultiplyAlpha );
            _gl.pixelStorei( 3317, texture.unpackAlignment );
            var needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( texture.image ) === false;
            var image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize );
            var supportsMips = isPowerOfTwo( image ) || isWebGL2,
                glFormat = utils.convert( texture.format ),
                glType = utils.convert( texture.type ),
                glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );
            setTextureParameters( textureType, texture, supportsMips );
            var mipmap, mipmaps = texture.mipmaps;
            if ( texture.isDepthTexture ) {
                // populate depth texture with dummy data
                glInternalFormat = 6402;
                if ( isWebGL2 ) {
                    if ( texture.type === FloatType ) {
                        glInternalFormat = 36012;
                    } else if ( texture.type === UnsignedIntType ) {
                        glInternalFormat = 33190;
                    } else if ( texture.type === UnsignedInt248Type ) {
                        glInternalFormat = 35056;
                    } else {
                        glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D
                    }
                } else {
                    if ( texture.type === FloatType ) {
                        console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' );
                    }
                }
                // validation checks for WebGL 1
                if ( texture.format === DepthFormat && glInternalFormat === 6402 ) {
                    // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
                    // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
                    // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
                    if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {
                        console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );
                        texture.type = UnsignedShortType;
                        glType = utils.convert( texture.type );
                    }
                }
                if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) {
                    // Depth stencil textures need the DEPTH_STENCIL internal format
                    // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
                    glInternalFormat = 34041;
                    // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
                    // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
                    // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
                    if ( texture.type !== UnsignedInt248Type ) {
                        console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );
                        texture.type = UnsignedInt248Type;
                        glType = utils.convert( texture.type );
                    }
                }
                //
                state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null );
            } else if ( texture.isDataTexture ) {
                // use manually created mipmaps if available
                // if there are no manual mipmaps
                // set 0 level mipmap and then use GL to generate other mipmap levels
                if ( mipmaps.length > 0 && supportsMips ) {
                    for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
                        mipmap = mipmaps[ i ];
                        state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
                    }
                    texture.generateMipmaps = false;
                    textureProperties.__maxMipLevel = mipmaps.length - 1;
                } else {
                    state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data );
                    textureProperties.__maxMipLevel = 0;
                }
            } else if ( texture.isCompressedTexture ) {
                for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
                    mipmap = mipmaps[ i ];
                    if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {
                        if ( glFormat !== null ) {
                            state.compressedTexImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );
                        } else {
                            console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );
                        }
                    } else {
                        state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
                    }
                }
                textureProperties.__maxMipLevel = mipmaps.length - 1;
            } else if ( texture.isDataTexture2DArray ) {
                state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
                textureProperties.__maxMipLevel = 0;
            } else if ( texture.isDataTexture3D ) {
                state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
                textureProperties.__maxMipLevel = 0;
            } else {
                // regular Texture (image, video, canvas)
                // use manually created mipmaps if available
                // if there are no manual mipmaps
                // set 0 level mipmap and then use GL to generate other mipmap levels
                if ( mipmaps.length > 0 && supportsMips ) {
                    for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
                        mipmap = mipmaps[ i ];
                        state.texImage2D( 3553, i, glInternalFormat, glFormat, glType, mipmap );
                    }
                    texture.generateMipmaps = false;
                    textureProperties.__maxMipLevel = mipmaps.length - 1;
                } else {
                    state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image );
                    textureProperties.__maxMipLevel = 0;
                }
            }
            if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {
                generateMipmap( textureType, texture, image.width, image.height );
            }
            textureProperties.__version = texture.version;
            if ( texture.onUpdate ) { texture.onUpdate( texture ); }
        }
        // Render targets
        // Setup storage for target texture and bind it to correct framebuffer
        function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {
            var glFormat = utils.convert( renderTarget.texture.format );
            var glType = utils.convert( renderTarget.texture.type );
            var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
            state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
            _gl.bindFramebuffer( 36160, framebuffer );
            _gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
            _gl.bindFramebuffer( 36160, null );
        }
        // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
        function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) {
            _gl.bindRenderbuffer( 36161, renderbuffer );
            if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {
                var glInternalFormat = 33189;
                if ( isMultisample ) {
                    var depthTexture = renderTarget.depthTexture;
                    if ( depthTexture && depthTexture.isDepthTexture ) {
                        if ( depthTexture.type === FloatType ) {
                            glInternalFormat = 36012;
                        } else if ( depthTexture.type === UnsignedIntType ) {
                            glInternalFormat = 33190;
                        }
                    }
                    var samples = getRenderTargetSamples( renderTarget );
                    _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );
                } else {
                    _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );
                }
                _gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer );
            } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
                if ( isMultisample ) {
                    var samples = getRenderTargetSamples( renderTarget );
                    _gl.renderbufferStorageMultisample( 36161, samples, 35056, renderTarget.width, renderTarget.height );
                } else {
                    _gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height );
                }
                _gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer );
            } else {
                var glFormat = utils.convert( renderTarget.texture.format );
                var glType = utils.convert( renderTarget.texture.type );
                var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
                if ( isMultisample ) {
                    var samples = getRenderTargetSamples( renderTarget );
                    _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );
                } else {
                    _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );
                }
            }
            _gl.bindRenderbuffer( 36161, null );
        }
        // Setup resources for a Depth Texture for a FBO (needs an extension)
        function setupDepthTexture( framebuffer, renderTarget ) {
            var isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget );
            if ( isCube ) { throw new Error( 'Depth Texture with cube render targets is not supported' ); }
            _gl.bindFramebuffer( 36160, framebuffer );
            if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {
                throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' );
            }
            // upload an empty depth texture with framebuffer size
            if ( ! properties.get( renderTarget.depthTexture ).__webglTexture ||
                    renderTarget.depthTexture.image.width !== renderTarget.width ||
                    renderTarget.depthTexture.image.height !== renderTarget.height ) {
                renderTarget.depthTexture.image.width = renderTarget.width;
                renderTarget.depthTexture.image.height = renderTarget.height;
                renderTarget.depthTexture.needsUpdate = true;
            }
            setTexture2D( renderTarget.depthTexture, 0 );
            var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;
            if ( renderTarget.depthTexture.format === DepthFormat ) {
                _gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 );
            } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {
                _gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 );
            } else {
                throw new Error( 'Unknown depthTexture format' );
            }
        }
        // Setup GL resources for a non-texture depth buffer
        function setupDepthRenderbuffer( renderTarget ) {
            var renderTargetProperties = properties.get( renderTarget );
            var isCube = ( renderTarget.isWebGLCubeRenderTarget === true );
            if ( renderTarget.depthTexture ) {
                if ( isCube ) { throw new Error( 'target.depthTexture not supported in Cube render targets' ); }
                setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );
            } else {
                if ( isCube ) {
                    renderTargetProperties.__webglDepthbuffer = [];
                    for ( var i = 0; i < 6; i ++ ) {
                        _gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] );
                        renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
                        setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false );
                    }
                } else {
                    _gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer );
                    renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
                    setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false );
                }
            }
            _gl.bindFramebuffer( 36160, null );
        }
        // Set up GL resources for the render target
        function setupRenderTarget( renderTarget ) {
            var renderTargetProperties = properties.get( renderTarget );
            var textureProperties = properties.get( renderTarget.texture );
            renderTarget.addEventListener( 'dispose', onRenderTargetDispose );
            textureProperties.__webglTexture = _gl.createTexture();
            info.memory.textures ++;
            var isCube = ( renderTarget.isWebGLCubeRenderTarget === true );
            var isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true );
            var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;
            // Handles WebGL2 RGBFormat fallback - #18858
            if ( isWebGL2 && renderTarget.texture.format === RGBFormat && ( renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType ) ) {
                renderTarget.texture.format = RGBAFormat;
                console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' );
            }
            // Setup framebuffer
            if ( isCube ) {
                renderTargetProperties.__webglFramebuffer = [];
                for ( var i = 0; i < 6; i ++ ) {
                    renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();
                }
            } else {
                renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
                if ( isMultisample ) {
                    if ( isWebGL2 ) {
                        renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
                        renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
                        _gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer );
                        var glFormat = utils.convert( renderTarget.texture.format );
                        var glType = utils.convert( renderTarget.texture.type );
                        var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
                        var samples = getRenderTargetSamples( renderTarget );
                        _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );
                        _gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer );
                        _gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer );
                        _gl.bindRenderbuffer( 36161, null );
                        if ( renderTarget.depthBuffer ) {
                            renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
                            setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true );
                        }
                        _gl.bindFramebuffer( 36160, null );
                    } else {
                        console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );
                    }
                }
            }
            // Setup color buffer
            if ( isCube ) {
                state.bindTexture( 34067, textureProperties.__webglTexture );
                setTextureParameters( 34067, renderTarget.texture, supportsMips );
                for ( var i = 0; i < 6; i ++ ) {
                    setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, 36064, 34069 + i );
                }
                if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {
                    generateMipmap( 34067, renderTarget.texture, renderTarget.width, renderTarget.height );
                }
                state.bindTexture( 34067, null );
            } else {
                state.bindTexture( 3553, textureProperties.__webglTexture );
                setTextureParameters( 3553, renderTarget.texture, supportsMips );
                setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553 );
                if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {
                    generateMipmap( 3553, renderTarget.texture, renderTarget.width, renderTarget.height );
                }
                state.bindTexture( 3553, null );
            }
            // Setup depth and stencil buffers
            if ( renderTarget.depthBuffer ) {
                setupDepthRenderbuffer( renderTarget );
            }
        }
        function updateRenderTargetMipmap( renderTarget ) {
            var texture = renderTarget.texture;
            var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;
            if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {
                var target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553;
                var webglTexture = properties.get( texture ).__webglTexture;
                state.bindTexture( target, webglTexture );
                generateMipmap( target, texture, renderTarget.width, renderTarget.height );
                state.bindTexture( target, null );
            }
        }
        function updateMultisampleRenderTarget( renderTarget ) {
            if ( renderTarget.isWebGLMultisampleRenderTarget ) {
                if ( isWebGL2 ) {
                    var renderTargetProperties = properties.get( renderTarget );
                    _gl.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer );
                    _gl.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer );
                    var width = renderTarget.width;
                    var height = renderTarget.height;
                    var mask = 16384;
                    if ( renderTarget.depthBuffer ) { mask |= 256; }
                    if ( renderTarget.stencilBuffer ) { mask |= 1024; }
                    _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 );
                    _gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); // see #18905
                } else {
                    console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );
                }
            }
        }
        function getRenderTargetSamples( renderTarget ) {
            return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ?
                Math.min( maxSamples, renderTarget.samples ) : 0;
        }
        function updateVideoTexture( texture ) {
            var frame = info.render.frame;
            // Check the last frame we updated the VideoTexture
            if ( _videoTextures.get( texture ) !== frame ) {
                _videoTextures.set( texture, frame );
                texture.update();
            }
        }
        // backwards compatibility
        var warnedTexture2D = false;
        var warnedTextureCube = false;
        function safeSetTexture2D( texture, slot ) {
            if ( texture && texture.isWebGLRenderTarget ) {
                if ( warnedTexture2D === false ) {
                    console.warn( "THREE.WebGLTextures.safeSetTexture2D: don't use render targets as textures. Use their .texture property instead." );
                    warnedTexture2D = true;
                }
                texture = texture.texture;
            }
            setTexture2D( texture, slot );
        }
        function safeSetTextureCube( texture, slot ) {
            if ( texture && texture.isWebGLCubeRenderTarget ) {
                if ( warnedTextureCube === false ) {
                    console.warn( "THREE.WebGLTextures.safeSetTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
                    warnedTextureCube = true;
                }
                texture = texture.texture;
            }
            // currently relying on the fact that WebGLCubeRenderTarget.texture is a Texture and NOT a CubeTexture
            // TODO: unify these code paths
            if ( ( texture && texture.isCubeTexture ) ||
                ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {
                // CompressedTexture can have Array in image :/
                // this function alone should take care of cube textures
                setTextureCube( texture, slot );
            } else {
                // assumed: texture property of THREE.WebGLCubeRenderTarget
                setTextureCubeDynamic( texture, slot );
            }
        }
        //
        this.allocateTextureUnit = allocateTextureUnit;
        this.resetTextureUnits = resetTextureUnits;
        this.setTexture2D = setTexture2D;
        this.setTexture2DArray = setTexture2DArray;
        this.setTexture3D = setTexture3D;
        this.setTextureCube = setTextureCube;
        this.setTextureCubeDynamic = setTextureCubeDynamic;
        this.setupRenderTarget = setupRenderTarget;
        this.updateRenderTargetMipmap = updateRenderTargetMipmap;
        this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
        this.safeSetTexture2D = safeSetTexture2D;
        this.safeSetTextureCube = safeSetTextureCube;
    }
    /**
     * @author thespite / http://www.twitter.com/thespite
     */
    function WebGLUtils( gl, extensions, capabilities ) {
        var isWebGL2 = capabilities.isWebGL2;
        function convert( p ) {
            var extension;
            if ( p === UnsignedByteType ) { return 5121; }
            if ( p === UnsignedShort4444Type ) { return 32819; }
            if ( p === UnsignedShort5551Type ) { return 32820; }
            if ( p === UnsignedShort565Type ) { return 33635; }
            if ( p === ByteType ) { return 5120; }
            if ( p === ShortType ) { return 5122; }
            if ( p === UnsignedShortType ) { return 5123; }
            if ( p === IntType ) { return 5124; }
            if ( p === UnsignedIntType ) { return 5125; }
            if ( p === FloatType ) { return 5126; }
            if ( p === HalfFloatType ) {
                if ( isWebGL2 ) { return 5131; }
                extension = extensions.get( 'OES_texture_half_float' );
                if ( extension !== null ) {
                    return extension.HALF_FLOAT_OES;
                } else {
                    return null;
                }
            }
            if ( p === AlphaFormat ) { return 6406; }
            if ( p === RGBFormat ) { return 6407; }
            if ( p === RGBAFormat ) { return 6408; }
            if ( p === LuminanceFormat ) { return 6409; }
            if ( p === LuminanceAlphaFormat ) { return 6410; }
            if ( p === DepthFormat ) { return 6402; }
            if ( p === DepthStencilFormat ) { return 34041; }
            if ( p === RedFormat ) { return 6403; }
            // WebGL2 formats.
            if ( p === RedIntegerFormat ) { return 36244; }
            if ( p === RGFormat ) { return 33319; }
            if ( p === RGIntegerFormat ) { return 33320; }
            if ( p === RGBIntegerFormat ) { return 36248; }
            if ( p === RGBAIntegerFormat ) { return 36249; }
            if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
                p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {
                extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );
                if ( extension !== null ) {
                    if ( p === RGB_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; }
                    if ( p === RGBA_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; }
                    if ( p === RGBA_S3TC_DXT3_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; }
                    if ( p === RGBA_S3TC_DXT5_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; }
                } else {
                    return null;
                }
            }
            if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
                p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {
                extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );
                if ( extension !== null ) {
                    if ( p === RGB_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; }
                    if ( p === RGB_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; }
                    if ( p === RGBA_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; }
                    if ( p === RGBA_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; }
                } else {
                    return null;
                }
            }
            if ( p === RGB_ETC1_Format ) {
                extension = extensions.get( 'WEBGL_compressed_texture_etc1' );
                if ( extension !== null ) {
                    return extension.COMPRESSED_RGB_ETC1_WEBGL;
                } else {
                    return null;
                }
            }
            if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) {
                extension = extensions.get( 'WEBGL_compressed_texture_etc' );
                if ( extension !== null ) {
                    if ( p === RGB_ETC2_Format ) { return extension.COMPRESSED_RGB8_ETC2; }
                    if ( p === RGBA_ETC2_EAC_Format ) { return extension.COMPRESSED_RGBA8_ETC2_EAC; }
                }
            }
            if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format ||
                p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format ||
                p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format ||
                p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format ||
                p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ||
                p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format ||
                p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format ||
                p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format ||
                p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format ||
                p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) {
                extension = extensions.get( 'WEBGL_compressed_texture_astc' );
                if ( extension !== null ) {
                    // TODO Complete?
                    return p;
                } else {
                    return null;
                }
            }
            if ( p === RGBA_BPTC_Format ) {
                extension = extensions.get( 'EXT_texture_compression_bptc' );
                if ( extension !== null ) {
                    // TODO Complete?
                    return p;
                } else {
                    return null;
                }
            }
            if ( p === UnsignedInt248Type ) {
                if ( isWebGL2 ) { return 34042; }
                extension = extensions.get( 'WEBGL_depth_texture' );
                if ( extension !== null ) {
                    return extension.UNSIGNED_INT_24_8_WEBGL;
                } else {
                    return null;
                }
            }
        }
        return { convert: convert };
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function ArrayCamera( array ) {
        PerspectiveCamera.call( this );
        this.cameras = array || [];
    }
    ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {
        constructor: ArrayCamera,
        isArrayCamera: true
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function Group() {
        Object3D.call( this );
        this.type = 'Group';
    }
    Group.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Group,
        isGroup: true
    } );
    /**
     * @author Mugen87 / https://github.com/Mugen87
     */
    function WebXRController() {
        this._targetRay = null;
        this._grip = null;
    }
    Object.assign( WebXRController.prototype, {
        constructor: WebXRController,
        getTargetRaySpace: function () {
            if ( this._targetRay === null ) {
                this._targetRay = new Group();
                this._targetRay.matrixAutoUpdate = false;
                this._targetRay.visible = false;
            }
            return this._targetRay;
        },
        getGripSpace: function () {
            if ( this._grip === null ) {
                this._grip = new Group();
                this._grip.matrixAutoUpdate = false;
                this._grip.visible = false;
            }
            return this._grip;
        },
        dispatchEvent: function ( event ) {
            if ( this._targetRay !== null ) {
                this._targetRay.dispatchEvent( event );
            }
            if ( this._grip !== null ) {
                this._grip.dispatchEvent( event );
            }
            return this;
        },
        disconnect: function ( inputSource ) {
            this.dispatchEvent( { type: 'disconnected', data: inputSource } );
            if ( this._targetRay !== null ) {
                this._targetRay.visible = false;
            }
            if ( this._grip !== null ) {
                this._grip.visible = false;
            }
            return this;
        },
        update: function ( inputSource, frame, referenceSpace ) {
            var inputPose = null;
            var gripPose = null;
            var targetRay = this._targetRay;
            var grip = this._grip;
            if ( inputSource ) {
                if ( targetRay !== null ) {
                    inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace );
                    if ( inputPose !== null ) {
                        targetRay.matrix.fromArray( inputPose.transform.matrix );
                        targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale );
                    }
                }
                if ( grip !== null && inputSource.gripSpace ) {
                    gripPose = frame.getPose( inputSource.gripSpace, referenceSpace );
                    if ( gripPose !== null ) {
                        grip.matrix.fromArray( gripPose.transform.matrix );
                        grip.matrix.decompose( grip.position, grip.rotation, grip.scale );
                    }
                }
            }
            if ( targetRay !== null ) {
                targetRay.visible = ( inputPose !== null );
            }
            if ( grip !== null ) {
                grip.visible = ( gripPose !== null );
            }
            return this;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function WebXRManager( renderer, gl ) {
        var scope = this;
        var session = null;
        var framebufferScaleFactor = 1.0;
        var referenceSpace = null;
        var referenceSpaceType = 'local-floor';
        var pose = null;
        var controllers = [];
        var inputSourcesMap = new Map();
        //
        var cameraL = new PerspectiveCamera();
        cameraL.layers.enable( 1 );
        cameraL.viewport = new Vector4();
        var cameraR = new PerspectiveCamera();
        cameraR.layers.enable( 2 );
        cameraR.viewport = new Vector4();
        var cameras = [ cameraL, cameraR ];
        var cameraVR = new ArrayCamera();
        cameraVR.layers.enable( 1 );
        cameraVR.layers.enable( 2 );
        var _currentDepthNear = null;
        var _currentDepthFar = null;
        //
        this.enabled = false;
        this.isPresenting = false;
        this.getController = function ( index ) {
            var controller = controllers[ index ];
            if ( controller === undefined ) {
                controller = new WebXRController();
                controllers[ index ] = controller;
            }
            return controller.getTargetRaySpace();
        };
        this.getControllerGrip = function ( index ) {
            var controller = controllers[ index ];
            if ( controller === undefined ) {
                controller = new WebXRController();
                controllers[ index ] = controller;
            }
            return controller.getGripSpace();
        };
        //
        function onSessionEvent( event ) {
            var controller = inputSourcesMap.get( event.inputSource );
            if ( controller ) {
                controller.dispatchEvent( { type: event.type } );
            }
        }
        function onSessionEnd() {
            inputSourcesMap.forEach( function ( controller, inputSource ) {
                controller.disconnect( inputSource );
            } );
            inputSourcesMap.clear();
            //
            renderer.setFramebuffer( null );
            renderer.setRenderTarget( renderer.getRenderTarget() ); // Hack #15830
            animation.stop();
            scope.isPresenting = false;
            scope.dispatchEvent( { type: 'sessionend' } );
        }
        function onRequestReferenceSpace( value ) {
            referenceSpace = value;
            animation.setContext( session );
            animation.start();
            scope.isPresenting = true;
            scope.dispatchEvent( { type: 'sessionstart' } );
        }
        this.setFramebufferScaleFactor = function ( value ) {
            framebufferScaleFactor = value;
            if ( scope.isPresenting === true ) {
                console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' );
            }
        };
        this.setReferenceSpaceType = function ( value ) {
            referenceSpaceType = value;
            if ( scope.isPresenting === true ) {
                console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' );
            }
        };
        this.getReferenceSpace = function () {
            return referenceSpace;
        };
        this.getSession = function () {
            return session;
        };
        this.setSession = function ( value ) {
            session = value;
            if ( session !== null ) {
                session.addEventListener( 'select', onSessionEvent );
                session.addEventListener( 'selectstart', onSessionEvent );
                session.addEventListener( 'selectend', onSessionEvent );
                session.addEventListener( 'squeeze', onSessionEvent );
                session.addEventListener( 'squeezestart', onSessionEvent );
                session.addEventListener( 'squeezeend', onSessionEvent );
                session.addEventListener( 'end', onSessionEnd );
                var attributes = gl.getContextAttributes();
                var layerInit = {
                    antialias: attributes.antialias,
                    alpha: attributes.alpha,
                    depth: attributes.depth,
                    stencil: attributes.stencil,
                    framebufferScaleFactor: framebufferScaleFactor
                };
                // eslint-disable-next-line no-undef
                var baseLayer = new XRWebGLLayer( session, gl, layerInit );
                session.updateRenderState( { baseLayer: baseLayer } );
                session.requestReferenceSpace( referenceSpaceType ).then( onRequestReferenceSpace );
                //
                session.addEventListener( 'inputsourceschange', updateInputSources );
            }
        };
        function updateInputSources( event ) {
            var inputSources = session.inputSources;
            // Assign inputSources to available controllers
            for ( var i = 0; i < controllers.length; i ++ ) {
                inputSourcesMap.set( inputSources[ i ], controllers[ i ] );
            }
            // Notify disconnected
            for ( var i = 0; i < event.removed.length; i ++ ) {
                var inputSource = event.removed[ i ];
                var controller = inputSourcesMap.get( inputSource );
                if ( controller ) {
                    controller.dispatchEvent( { type: 'disconnected', data: inputSource } );
                    inputSourcesMap.delete( inputSource );
                }
            }
            // Notify connected
            for ( var i = 0; i < event.added.length; i ++ ) {
                var inputSource = event.added[ i ];
                var controller = inputSourcesMap.get( inputSource );
                if ( controller ) {
                    controller.dispatchEvent( { type: 'connected', data: inputSource } );
                }
            }
        }
        //
        var cameraLPos = new Vector3();
        var cameraRPos = new Vector3();
        /**
         * @author jsantell / https://www.jsantell.com/
         *
         * Assumes 2 cameras that are parallel and share an X-axis, and that
         * the cameras' projection and world matrices have already been set.
         * And that near and far planes are identical for both cameras.
         * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
         */
        function setProjectionFromUnion( camera, cameraL, cameraR ) {
            cameraLPos.setFromMatrixPosition( cameraL.matrixWorld );
            cameraRPos.setFromMatrixPosition( cameraR.matrixWorld );
            var ipd = cameraLPos.distanceTo( cameraRPos );
            var projL = cameraL.projectionMatrix.elements;
            var projR = cameraR.projectionMatrix.elements;
            // VR systems will have identical far and near planes, and
            // most likely identical top and bottom frustum extents.
            // Use the left camera for these values.
            var near = projL[ 14 ] / ( projL[ 10 ] - 1 );
            var far = projL[ 14 ] / ( projL[ 10 ] + 1 );
            var topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ];
            var bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ];
            var leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ];
            var rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ];
            var left = near * leftFov;
            var right = near * rightFov;
            // Calculate the new camera's position offset from the
            // left camera. xOffset should be roughly half `ipd`.
            var zOffset = ipd / ( - leftFov + rightFov );
            var xOffset = zOffset * - leftFov;
            // TODO: Better way to apply this offset?
            cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale );
            camera.translateX( xOffset );
            camera.translateZ( zOffset );
            camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale );
            camera.matrixWorldInverse.getInverse( camera.matrixWorld );
            // Find the union of the frustum values of the cameras and scale
            // the values so that the near plane's position does not change in world space,
            // although must now be relative to the new union camera.
            var near2 = near + zOffset;
            var far2 = far + zOffset;
            var left2 = left - xOffset;
            var right2 = right + ( ipd - xOffset );
            var top2 = topFov * far / far2 * near2;
            var bottom2 = bottomFov * far / far2 * near2;
            camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 );
        }
        function updateCamera( camera, parent ) {
            if ( parent === null ) {
                camera.matrixWorld.copy( camera.matrix );
            } else {
                camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix );
            }
            camera.matrixWorldInverse.getInverse( camera.matrixWorld );
        }
        this.getCamera = function ( camera ) {
            cameraVR.near = cameraR.near = cameraL.near = camera.near;
            cameraVR.far = cameraR.far = cameraL.far = camera.far;
            if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) {
                // Note that the new renderState won't apply until the next frame. See #18320
                session.updateRenderState( {
                    depthNear: cameraVR.near,
                    depthFar: cameraVR.far
                } );
                _currentDepthNear = cameraVR.near;
                _currentDepthFar = cameraVR.far;
            }
            var parent = camera.parent;
            var cameras = cameraVR.cameras;
            updateCamera( cameraVR, parent );
            for ( var i = 0; i < cameras.length; i ++ ) {
                updateCamera( cameras[ i ], parent );
            }
            // update camera and its children
            camera.matrixWorld.copy( cameraVR.matrixWorld );
            var children = camera.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                children[ i ].updateMatrixWorld( true );
            }
            // update projection matrix for proper view frustum culling
            if ( cameras.length === 2 ) {
                setProjectionFromUnion( cameraVR, cameraL, cameraR );
            } else {
                // assume single camera setup (AR)
                cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );
            }
            return cameraVR;
        };
        // Animation Loop
        var onAnimationFrameCallback = null;
        function onAnimationFrame( time, frame ) {
            pose = frame.getViewerPose( referenceSpace );
            if ( pose !== null ) {
                var views = pose.views;
                var baseLayer = session.renderState.baseLayer;
                renderer.setFramebuffer( baseLayer.framebuffer );
                var cameraVRNeedsUpdate = false;
                // check if it's necessary to rebuild cameraVR's camera list
                if ( views.length !== cameraVR.cameras.length ) {
                    cameraVR.cameras.length = 0;
                    cameraVRNeedsUpdate = true;
                }
                for ( var i = 0; i < views.length; i ++ ) {
                    var view = views[ i ];
                    var viewport = baseLayer.getViewport( view );
                    var camera = cameras[ i ];
                    camera.matrix.fromArray( view.transform.matrix );
                    camera.projectionMatrix.fromArray( view.projectionMatrix );
                    camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height );
                    if ( i === 0 ) {
                        cameraVR.matrix.copy( camera.matrix );
                    }
                    if ( cameraVRNeedsUpdate === true ) {
                        cameraVR.cameras.push( camera );
                    }
                }
            }
            //
            var inputSources = session.inputSources;
            for ( var i = 0; i < controllers.length; i ++ ) {
                var controller = controllers[ i ];
                var inputSource = inputSources[ i ];
                controller.update( inputSource, frame, referenceSpace );
            }
            if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time, frame ); }
        }
        var animation = new WebGLAnimation();
        animation.setAnimationLoop( onAnimationFrame );
        this.setAnimationLoop = function ( callback ) {
            onAnimationFrameCallback = callback;
        };
        this.dispose = function () {};
    }
    Object.assign( WebXRManager.prototype, EventDispatcher.prototype );
    /**
     * @author supereggbert / http://www.paulbrunt.co.uk/
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     * @author szimek / https://github.com/szimek/
     * @author tschw
     */
    function WebGLRenderer( parameters ) {
        parameters = parameters || {};
        var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
            _context = parameters.context !== undefined ? parameters.context : null,
            _alpha = parameters.alpha !== undefined ? parameters.alpha : false,
            _depth = parameters.depth !== undefined ? parameters.depth : true,
            _stencil = parameters.stencil !== undefined ? parameters.stencil : true,
            _antialias = parameters.antialias !== undefined ? parameters.antialias : false,
            _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
            _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
            _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
            _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
        var currentRenderList = null;
        var currentRenderState = null;
        // public properties
        this.domElement = _canvas;
        // Debug configuration container
        this.debug = {
            /**
             * Enables error checking and reporting when shader programs are being compiled
             * @type {boolean}
             */
            checkShaderErrors: true
        };
        // clearing
        this.autoClear = true;
        this.autoClearColor = true;
        this.autoClearDepth = true;
        this.autoClearStencil = true;
        // scene graph
        this.sortObjects = true;
        // user-defined clipping
        this.clippingPlanes = [];
        this.localClippingEnabled = false;
        // physically based shading
        this.gammaFactor = 2.0;    // for backwards compatibility
        this.outputEncoding = LinearEncoding;
        // physical lights
        this.physicallyCorrectLights = false;
        // tone mapping
        this.toneMapping = NoToneMapping;
        this.toneMappingExposure = 1.0;
        this.toneMappingWhitePoint = 1.0;
        // morphs
        this.maxMorphTargets = 8;
        this.maxMorphNormals = 4;
        // internal properties
        var _this = this,
            _isContextLost = false,
            // internal state cache
            _framebuffer = null,
            _currentActiveCubeFace = 0,
            _currentActiveMipmapLevel = 0,
            _currentRenderTarget = null,
            _currentFramebuffer = null,
            _currentMaterialId = - 1,
            // geometry and program caching
            _currentGeometryProgram = {
                geometry: null,
                program: null,
                wireframe: false
            },
            _currentCamera = null,
            _currentArrayCamera = null,
            _currentViewport = new Vector4(),
            _currentScissor = new Vector4(),
            _currentScissorTest = null,
            //
            _width = _canvas.width,
            _height = _canvas.height,
            _pixelRatio = 1,
            _opaqueSort = null,
            _transparentSort = null,
            _viewport = new Vector4( 0, 0, _width, _height ),
            _scissor = new Vector4( 0, 0, _width, _height ),
            _scissorTest = false,
            // frustum
            _frustum = new Frustum(),
            // clipping
            _clipping = new WebGLClipping(),
            _clippingEnabled = false,
            _localClippingEnabled = false,
            // camera matrices cache
            _projScreenMatrix = new Matrix4(),
            _vector3 = new Vector3();
        function getTargetPixelRatio() {
            return _currentRenderTarget === null ? _pixelRatio : 1;
        }
        // initialize
        var _gl;
        try {
            var contextAttributes = {
                alpha: _alpha,
                depth: _depth,
                stencil: _stencil,
                antialias: _antialias,
                premultipliedAlpha: _premultipliedAlpha,
                preserveDrawingBuffer: _preserveDrawingBuffer,
                powerPreference: _powerPreference,
                failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat,
                xrCompatible: true
            };
            // event listeners must be registered before WebGL context is created, see #12753
            _canvas.addEventListener( 'webglcontextlost', onContextLost, false );
            _canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );
            _gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes );
            if ( _gl === null ) {
                if ( _canvas.getContext( 'webgl' ) !== null ) {
                    throw new Error( 'Error creating WebGL context with your selected attributes.' );
                } else {
                    throw new Error( 'Error creating WebGL context.' );
                }
            }
            // Some experimental-webgl implementations do not have getShaderPrecisionFormat
            if ( _gl.getShaderPrecisionFormat === undefined ) {
                _gl.getShaderPrecisionFormat = function () {
                    return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };
                };
            }
        } catch ( error ) {
            console.error( 'THREE.WebGLRenderer: ' + error.message );
            throw error;
        }
        var extensions, capabilities, state, info;
        var properties, textures, attributes, geometries, objects;
        var programCache, renderLists, renderStates;
        var background, morphtargets, bufferRenderer, indexedBufferRenderer;
        var utils;
        function initGLContext() {
            extensions = new WebGLExtensions( _gl );
            capabilities = new WebGLCapabilities( _gl, extensions, parameters );
            if ( capabilities.isWebGL2 === false ) {
                extensions.get( 'WEBGL_depth_texture' );
                extensions.get( 'OES_texture_float' );
                extensions.get( 'OES_texture_half_float' );
                extensions.get( 'OES_texture_half_float_linear' );
                extensions.get( 'OES_standard_derivatives' );
                extensions.get( 'OES_element_index_uint' );
                extensions.get( 'ANGLE_instanced_arrays' );
            }
            extensions.get( 'OES_texture_float_linear' );
            utils = new WebGLUtils( _gl, extensions, capabilities );
            state = new WebGLState( _gl, extensions, capabilities );
            state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );
            state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );
            info = new WebGLInfo( _gl );
            properties = new WebGLProperties();
            textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
            attributes = new WebGLAttributes( _gl, capabilities );
            geometries = new WebGLGeometries( _gl, attributes, info );
            objects = new WebGLObjects( _gl, geometries, attributes, info );
            morphtargets = new WebGLMorphtargets( _gl );
            programCache = new WebGLPrograms( _this, extensions, capabilities );
            renderLists = new WebGLRenderLists();
            renderStates = new WebGLRenderStates();
            background = new WebGLBackground( _this, state, objects, _premultipliedAlpha );
            bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities );
            indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities );
            info.programs = programCache.programs;
            _this.capabilities = capabilities;
            _this.extensions = extensions;
            _this.properties = properties;
            _this.renderLists = renderLists;
            _this.state = state;
            _this.info = info;
        }
        initGLContext();
        // xr
        var xr = new WebXRManager( _this, _gl );
        this.xr = xr;
        // shadow map
        var shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize );
        this.shadowMap = shadowMap;
        // API
        this.getContext = function () {
            return _gl;
        };
        this.getContextAttributes = function () {
            return _gl.getContextAttributes();
        };
        this.forceContextLoss = function () {
            var extension = extensions.get( 'WEBGL_lose_context' );
            if ( extension ) { extension.loseContext(); }
        };
        this.forceContextRestore = function () {
            var extension = extensions.get( 'WEBGL_lose_context' );
            if ( extension ) { extension.restoreContext(); }
        };
        this.getPixelRatio = function () {
            return _pixelRatio;
        };
        this.setPixelRatio = function ( value ) {
            if ( value === undefined ) { return; }
            _pixelRatio = value;
            this.setSize( _width, _height, false );
        };
        this.getSize = function ( target ) {
            if ( target === undefined ) {
                console.warn( 'WebGLRenderer: .getsize() now requires a Vector2 as an argument' );
                target = new Vector2();
            }
            return target.set( _width, _height );
        };
        this.setSize = function ( width, height, updateStyle ) {
            if ( xr.isPresenting ) {
                console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
                return;
            }
            _width = width;
            _height = height;
            _canvas.width = Math.floor( width * _pixelRatio );
            _canvas.height = Math.floor( height * _pixelRatio );
            if ( updateStyle !== false ) {
                _canvas.style.width = width + 'px';
                _canvas.style.height = height + 'px';
            }
            this.setViewport( 0, 0, width, height );
        };
        this.getDrawingBufferSize = function ( target ) {
            if ( target === undefined ) {
                console.warn( 'WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument' );
                target = new Vector2();
            }
            return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor();
        };
        this.setDrawingBufferSize = function ( width, height, pixelRatio ) {
            _width = width;
            _height = height;
            _pixelRatio = pixelRatio;
            _canvas.width = Math.floor( width * pixelRatio );
            _canvas.height = Math.floor( height * pixelRatio );
            this.setViewport( 0, 0, width, height );
        };
        this.getCurrentViewport = function ( target ) {
            if ( target === undefined ) {
                console.warn( 'WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument' );
                target = new Vector4();
            }
            return target.copy( _currentViewport );
        };
        this.getViewport = function ( target ) {
            return target.copy( _viewport );
        };
        this.setViewport = function ( x, y, width, height ) {
            if ( x.isVector4 ) {
                _viewport.set( x.x, x.y, x.z, x.w );
            } else {
                _viewport.set( x, y, width, height );
            }
            state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );
        };
        this.getScissor = function ( target ) {
            return target.copy( _scissor );
        };
        this.setScissor = function ( x, y, width, height ) {
            if ( x.isVector4 ) {
                _scissor.set( x.x, x.y, x.z, x.w );
            } else {
                _scissor.set( x, y, width, height );
            }
            state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );
        };
        this.getScissorTest = function () {
            return _scissorTest;
        };
        this.setScissorTest = function ( boolean ) {
            state.setScissorTest( _scissorTest = boolean );
        };
        this.setOpaqueSort = function ( method ) {
            _opaqueSort = method;
        };
        this.setTransparentSort = function ( method ) {
            _transparentSort = method;
        };
        // Clearing
        this.getClearColor = function () {
            return background.getClearColor();
        };
        this.setClearColor = function () {
            background.setClearColor.apply( background, arguments );
        };
        this.getClearAlpha = function () {
            return background.getClearAlpha();
        };
        this.setClearAlpha = function () {
            background.setClearAlpha.apply( background, arguments );
        };
        this.clear = function ( color, depth, stencil ) {
            var bits = 0;
            if ( color === undefined || color ) { bits |= 16384; }
            if ( depth === undefined || depth ) { bits |= 256; }
            if ( stencil === undefined || stencil ) { bits |= 1024; }
            _gl.clear( bits );
        };
        this.clearColor = function () {
            this.clear( true, false, false );
        };
        this.clearDepth = function () {
            this.clear( false, true, false );
        };
        this.clearStencil = function () {
            this.clear( false, false, true );
        };
        //
        this.dispose = function () {
            _canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
            _canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );
            renderLists.dispose();
            renderStates.dispose();
            properties.dispose();
            objects.dispose();
            xr.dispose();
            animation.stop();
        };
        // Events
        function onContextLost( event ) {
            event.preventDefault();
            console.log( 'THREE.WebGLRenderer: Context Lost.' );
            _isContextLost = true;
        }
        function onContextRestore( /* event */ ) {
            console.log( 'THREE.WebGLRenderer: Context Restored.' );
            _isContextLost = false;
            initGLContext();
        }
        function onMaterialDispose( event ) {
            var material = event.target;
            material.removeEventListener( 'dispose', onMaterialDispose );
            deallocateMaterial( material );
        }
        // Buffer deallocation
        function deallocateMaterial( material ) {
            releaseMaterialProgramReference( material );
            properties.remove( material );
        }
        function releaseMaterialProgramReference( material ) {
            var programInfo = properties.get( material ).program;
            material.program = undefined;
            if ( programInfo !== undefined ) {
                programCache.releaseProgram( programInfo );
            }
        }
        // Buffer rendering
        function renderObjectImmediate( object, program ) {
            object.render( function ( object ) {
                _this.renderBufferImmediate( object, program );
            } );
        }
        this.renderBufferImmediate = function ( object, program ) {
            state.initAttributes();
            var buffers = properties.get( object );
            if ( object.hasPositions && ! buffers.position ) { buffers.position = _gl.createBuffer(); }
            if ( object.hasNormals && ! buffers.normal ) { buffers.normal = _gl.createBuffer(); }
            if ( object.hasUvs && ! buffers.uv ) { buffers.uv = _gl.createBuffer(); }
            if ( object.hasColors && ! buffers.color ) { buffers.color = _gl.createBuffer(); }
            var programAttributes = program.getAttributes();
            if ( object.hasPositions ) {
                _gl.bindBuffer( 34962, buffers.position );
                _gl.bufferData( 34962, object.positionArray, 35048 );
                state.enableAttribute( programAttributes.position );
                _gl.vertexAttribPointer( programAttributes.position, 3, 5126, false, 0, 0 );
            }
            if ( object.hasNormals ) {
                _gl.bindBuffer( 34962, buffers.normal );
                _gl.bufferData( 34962, object.normalArray, 35048 );
                state.enableAttribute( programAttributes.normal );
                _gl.vertexAttribPointer( programAttributes.normal, 3, 5126, false, 0, 0 );
            }
            if ( object.hasUvs ) {
                _gl.bindBuffer( 34962, buffers.uv );
                _gl.bufferData( 34962, object.uvArray, 35048 );
                state.enableAttribute( programAttributes.uv );
                _gl.vertexAttribPointer( programAttributes.uv, 2, 5126, false, 0, 0 );
            }
            if ( object.hasColors ) {
                _gl.bindBuffer( 34962, buffers.color );
                _gl.bufferData( 34962, object.colorArray, 35048 );
                state.enableAttribute( programAttributes.color );
                _gl.vertexAttribPointer( programAttributes.color, 3, 5126, false, 0, 0 );
            }
            state.disableUnusedAttributes();
            _gl.drawArrays( 4, 0, object.count );
            object.count = 0;
        };
        var tempScene = new Scene();
        this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) {
            if ( scene === null ) { scene = tempScene; } // renderBufferDirect second parameter used to be fog (could be null)
            var frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );
            var program = setProgram( camera, scene, material, object );
            state.setMaterial( material, frontFaceCW );
            var updateBuffers = false;
            if ( _currentGeometryProgram.geometry !== geometry.id ||
                _currentGeometryProgram.program !== program.id ||
                _currentGeometryProgram.wireframe !== ( material.wireframe === true ) ) {
                _currentGeometryProgram.geometry = geometry.id;
                _currentGeometryProgram.program = program.id;
                _currentGeometryProgram.wireframe = material.wireframe === true;
                updateBuffers = true;
            }
            if ( material.morphTargets || material.morphNormals ) {
                morphtargets.update( object, geometry, material, program );
                updateBuffers = true;
            }
            if ( object.isInstancedMesh === true ) {
                updateBuffers = true;
            }
            //
            var index = geometry.index;
            var position = geometry.attributes.position;
            //
            if ( index === null ) {
                if ( position === undefined || position.count === 0 ) { return; }
            } else if ( index.count === 0 ) {
                return;
            }
            //
            var rangeFactor = 1;
            if ( material.wireframe === true ) {
                index = geometries.getWireframeAttribute( geometry );
                rangeFactor = 2;
            }
            var attribute;
            var renderer = bufferRenderer;
            if ( index !== null ) {
                attribute = attributes.get( index );
                renderer = indexedBufferRenderer;
                renderer.setIndex( attribute );
            }
            if ( updateBuffers ) {
                setupVertexAttributes( object, geometry, material, program );
                if ( index !== null ) {
                    _gl.bindBuffer( 34963, attribute.buffer );
                }
            }
            //
            var dataCount = ( index !== null ) ? index.count : position.count;
            var rangeStart = geometry.drawRange.start * rangeFactor;
            var rangeCount = geometry.drawRange.count * rangeFactor;
            var groupStart = group !== null ? group.start * rangeFactor : 0;
            var groupCount = group !== null ? group.count * rangeFactor : Infinity;
            var drawStart = Math.max( rangeStart, groupStart );
            var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;
            var drawCount = Math.max( 0, drawEnd - drawStart + 1 );
            if ( drawCount === 0 ) { return; }
            //
            if ( object.isMesh ) {
                if ( material.wireframe === true ) {
                    state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
                    renderer.setMode( 1 );
                } else {
                    renderer.setMode( 4 );
                }
            } else if ( object.isLine ) {
                var lineWidth = material.linewidth;
                if ( lineWidth === undefined ) { lineWidth = 1; } // Not using Line*Material
                state.setLineWidth( lineWidth * getTargetPixelRatio() );
                if ( object.isLineSegments ) {
                    renderer.setMode( 1 );
                } else if ( object.isLineLoop ) {
                    renderer.setMode( 2 );
                } else {
                    renderer.setMode( 3 );
                }
            } else if ( object.isPoints ) {
                renderer.setMode( 0 );
            } else if ( object.isSprite ) {
                renderer.setMode( 4 );
            }
            if ( object.isInstancedMesh ) {
                renderer.renderInstances( geometry, drawStart, drawCount, object.count );
            } else if ( geometry.isInstancedBufferGeometry ) {
                renderer.renderInstances( geometry, drawStart, drawCount, geometry.maxInstancedCount );
            } else {
                renderer.render( drawStart, drawCount );
            }
        };
        function setupVertexAttributes( object, geometry, material, program ) {
            if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) {
                if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) { return; }
            }
            state.initAttributes();
            var geometryAttributes = geometry.attributes;
            var programAttributes = program.getAttributes();
            var materialDefaultAttributeValues = material.defaultAttributeValues;
            for ( var name in programAttributes ) {
                var programAttribute = programAttributes[ name ];
                if ( programAttribute >= 0 ) {
                    var geometryAttribute = geometryAttributes[ name ];
                    if ( geometryAttribute !== undefined ) {
                        var normalized = geometryAttribute.normalized;
                        var size = geometryAttribute.itemSize;
                        var attribute = attributes.get( geometryAttribute );
                        // TODO Attribute may not be available on context restore
                        if ( attribute === undefined ) { continue; }
                        var buffer = attribute.buffer;
                        var type = attribute.type;
                        var bytesPerElement = attribute.bytesPerElement;
                        if ( geometryAttribute.isInterleavedBufferAttribute ) {
                            var data = geometryAttribute.data;
                            var stride = data.stride;
                            var offset = geometryAttribute.offset;
                            if ( data && data.isInstancedInterleavedBuffer ) {
                                state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );
                                if ( geometry.maxInstancedCount === undefined ) {
                                    geometry.maxInstancedCount = data.meshPerAttribute * data.count;
                                }
                            } else {
                                state.enableAttribute( programAttribute );
                            }
                            _gl.bindBuffer( 34962, buffer );
                            state.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement );
                        } else {
                            if ( geometryAttribute.isInstancedBufferAttribute ) {
                                state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );
                                if ( geometry.maxInstancedCount === undefined ) {
                                    geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
                                }
                            } else {
                                state.enableAttribute( programAttribute );
                            }
                            _gl.bindBuffer( 34962, buffer );
                            state.vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 );
                        }
                    } else if ( name === 'instanceMatrix' ) {
                        var attribute = attributes.get( object.instanceMatrix );
                        // TODO Attribute may not be available on context restore
                        if ( attribute === undefined ) { continue; }
                        var buffer = attribute.buffer;
                        var type = attribute.type;
                        state.enableAttributeAndDivisor( programAttribute + 0, 1 );
                        state.enableAttributeAndDivisor( programAttribute + 1, 1 );
                        state.enableAttributeAndDivisor( programAttribute + 2, 1 );
                        state.enableAttributeAndDivisor( programAttribute + 3, 1 );
                        _gl.bindBuffer( 34962, buffer );
                        _gl.vertexAttribPointer( programAttribute + 0, 4, type, false, 64, 0 );
                        _gl.vertexAttribPointer( programAttribute + 1, 4, type, false, 64, 16 );
                        _gl.vertexAttribPointer( programAttribute + 2, 4, type, false, 64, 32 );
                        _gl.vertexAttribPointer( programAttribute + 3, 4, type, false, 64, 48 );
                    } else if ( materialDefaultAttributeValues !== undefined ) {
                        var value = materialDefaultAttributeValues[ name ];
                        if ( value !== undefined ) {
                            switch ( value.length ) {
                                case 2:
                                    _gl.vertexAttrib2fv( programAttribute, value );
                                    break;
                                case 3:
                                    _gl.vertexAttrib3fv( programAttribute, value );
                                    break;
                                case 4:
                                    _gl.vertexAttrib4fv( programAttribute, value );
                                    break;
                                default:
                                    _gl.vertexAttrib1fv( programAttribute, value );
                            }
                        }
                    }
                }
            }
            state.disableUnusedAttributes();
        }
        // Compile
        this.compile = function ( scene, camera ) {
            currentRenderState = renderStates.get( scene, camera );
            currentRenderState.init();
            scene.traverse( function ( object ) {
                if ( object.isLight ) {
                    currentRenderState.pushLight( object );
                    if ( object.castShadow ) {
                        currentRenderState.pushShadow( object );
                    }
                }
            } );
            currentRenderState.setupLights( camera );
            var compiled = {};
            scene.traverse( function ( object ) {
                if ( object.material ) {
                    if ( Array.isArray( object.material ) ) {
                        for ( var i = 0; i < object.material.length; i ++ ) {
                            if ( object.material[ i ].uuid in compiled === false ) {
                                initMaterial( object.material[ i ], scene, object );
                                compiled[ object.material[ i ].uuid ] = true;
                            }
                        }
                    } else if ( object.material.uuid in compiled === false ) {
                        initMaterial( object.material, scene, object );
                        compiled[ object.material.uuid ] = true;
                    }
                }
            } );
        };
        // Animation Loop
        var onAnimationFrameCallback = null;
        function onAnimationFrame( time ) {
            if ( xr.isPresenting ) { return; }
            if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time ); }
        }
        var animation = new WebGLAnimation();
        animation.setAnimationLoop( onAnimationFrame );
        if ( typeof window !== 'undefined' ) { animation.setContext( window ); }
        this.setAnimationLoop = function ( callback ) {
            onAnimationFrameCallback = callback;
            xr.setAnimationLoop( callback );
            animation.start();
        };
        // Rendering
        this.render = function ( scene, camera ) {
            var renderTarget, forceClear;
            if ( arguments[ 2 ] !== undefined ) {
                console.warn( 'THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.' );
                renderTarget = arguments[ 2 ];
            }
            if ( arguments[ 3 ] !== undefined ) {
                console.warn( 'THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.' );
                forceClear = arguments[ 3 ];
            }
            if ( ! ( camera && camera.isCamera ) ) {
                console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
                return;
            }
            if ( _isContextLost ) { return; }
            // reset caching for this frame
            _currentGeometryProgram.geometry = null;
            _currentGeometryProgram.program = null;
            _currentGeometryProgram.wireframe = false;
            _currentMaterialId = - 1;
            _currentCamera = null;
            // update scene graph
            if ( scene.autoUpdate === true ) { scene.updateMatrixWorld(); }
            // update camera matrices and frustum
            if ( camera.parent === null ) { camera.updateMatrixWorld(); }
            if ( xr.enabled && xr.isPresenting ) {
                camera = xr.getCamera( camera );
            }
            //
            scene.onBeforeRender( _this, scene, camera, renderTarget || _currentRenderTarget );
            currentRenderState = renderStates.get( scene, camera );
            currentRenderState.init();
            _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
            _frustum.setFromProjectionMatrix( _projScreenMatrix );
            _localClippingEnabled = this.localClippingEnabled;
            _clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );
            currentRenderList = renderLists.get( scene, camera );
            currentRenderList.init();
            projectObject( scene, camera, 0, _this.sortObjects );
            currentRenderList.finish();
            if ( _this.sortObjects === true ) {
                currentRenderList.sort( _opaqueSort, _transparentSort );
            }
            //
            if ( _clippingEnabled ) { _clipping.beginShadows(); }
            var shadowsArray = currentRenderState.state.shadowsArray;
            shadowMap.render( shadowsArray, scene, camera );
            currentRenderState.setupLights( camera );
            if ( _clippingEnabled ) { _clipping.endShadows(); }
            //
            if ( this.info.autoReset ) { this.info.reset(); }
            if ( renderTarget !== undefined ) {
                this.setRenderTarget( renderTarget );
            }
            //
            background.render( currentRenderList, scene, camera, forceClear );
            // render scene
            var opaqueObjects = currentRenderList.opaque;
            var transparentObjects = currentRenderList.transparent;
            if ( scene.overrideMaterial ) {
                var overrideMaterial = scene.overrideMaterial;
                if ( opaqueObjects.length ) { renderObjects( opaqueObjects, scene, camera, overrideMaterial ); }
                if ( transparentObjects.length ) { renderObjects( transparentObjects, scene, camera, overrideMaterial ); }
            } else {
                // opaque pass (front-to-back order)
                if ( opaqueObjects.length ) { renderObjects( opaqueObjects, scene, camera ); }
                // transparent pass (back-to-front order)
                if ( transparentObjects.length ) { renderObjects( transparentObjects, scene, camera ); }
            }
            //
            scene.onAfterRender( _this, scene, camera );
            //
            if ( _currentRenderTarget !== null ) {
                // Generate mipmap if we're using any kind of mipmap filtering
                textures.updateRenderTargetMipmap( _currentRenderTarget );
                // resolve multisample renderbuffers to a single-sample texture if necessary
                textures.updateMultisampleRenderTarget( _currentRenderTarget );
            }
            // Ensure depth buffer writing is enabled so it can be cleared on next render
            state.buffers.depth.setTest( true );
            state.buffers.depth.setMask( true );
            state.buffers.color.setMask( true );
            state.setPolygonOffset( false );
            // _gl.finish();
            currentRenderList = null;
            currentRenderState = null;
        };
        function projectObject( object, camera, groupOrder, sortObjects ) {
            if ( object.visible === false ) { return; }
            var visible = object.layers.test( camera.layers );
            if ( visible ) {
                if ( object.isGroup ) {
                    groupOrder = object.renderOrder;
                } else if ( object.isLOD ) {
                    if ( object.autoUpdate === true ) { object.update( camera ); }
                } else if ( object.isLight ) {
                    currentRenderState.pushLight( object );
                    if ( object.castShadow ) {
                        currentRenderState.pushShadow( object );
                    }
                } else if ( object.isSprite ) {
                    if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
                        if ( sortObjects ) {
                            _vector3.setFromMatrixPosition( object.matrixWorld )
                                .applyMatrix4( _projScreenMatrix );
                        }
                        var geometry = objects.update( object );
                        var material = object.material;
                        if ( material.visible ) {
                            currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );
                        }
                    }
                } else if ( object.isImmediateRenderObject ) {
                    if ( sortObjects ) {
                        _vector3.setFromMatrixPosition( object.matrixWorld )
                            .applyMatrix4( _projScreenMatrix );
                    }
                    currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null );
                } else if ( object.isMesh || object.isLine || object.isPoints ) {
                    if ( object.isSkinnedMesh ) {
                        // update skeleton only once in a frame
                        if ( object.skeleton.frame !== info.render.frame ) {
                            object.skeleton.update();
                            object.skeleton.frame = info.render.frame;
                        }
                    }
                    if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
                        if ( sortObjects ) {
                            _vector3.setFromMatrixPosition( object.matrixWorld )
                                .applyMatrix4( _projScreenMatrix );
                        }
                        var geometry = objects.update( object );
                        var material = object.material;
                        if ( Array.isArray( material ) ) {
                            var groups = geometry.groups;
                            for ( var i = 0, l = groups.length; i < l; i ++ ) {
                                var group = groups[ i ];
                                var groupMaterial = material[ group.materialIndex ];
                                if ( groupMaterial && groupMaterial.visible ) {
                                    currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group );
                                }
                            }
                        } else if ( material.visible ) {
                            currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );
                        }
                    }
                }
            }
            var children = object.children;
            for ( var i = 0, l = children.length; i < l; i ++ ) {
                projectObject( children[ i ], camera, groupOrder, sortObjects );
            }
        }
        function renderObjects( renderList, scene, camera, overrideMaterial ) {
            for ( var i = 0, l = renderList.length; i < l; i ++ ) {
                var renderItem = renderList[ i ];
                var object = renderItem.object;
                var geometry = renderItem.geometry;
                var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
                var group = renderItem.group;
                if ( camera.isArrayCamera ) {
                    _currentArrayCamera = camera;
                    var cameras = camera.cameras;
                    for ( var j = 0, jl = cameras.length; j < jl; j ++ ) {
                        var camera2 = cameras[ j ];
                        if ( object.layers.test( camera2.layers ) ) {
                            state.viewport( _currentViewport.copy( camera2.viewport ) );
                            currentRenderState.setupLights( camera2 );
                            renderObject( object, scene, camera2, geometry, material, group );
                        }
                    }
                } else {
                    _currentArrayCamera = null;
                    renderObject( object, scene, camera, geometry, material, group );
                }
            }
        }
        function renderObject( object, scene, camera, geometry, material, group ) {
            object.onBeforeRender( _this, scene, camera, geometry, material, group );
            currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );
            object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
            object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
            if ( object.isImmediateRenderObject ) {
                var program = setProgram( camera, scene, material, object );
                state.setMaterial( material );
                _currentGeometryProgram.geometry = null;
                _currentGeometryProgram.program = null;
                _currentGeometryProgram.wireframe = false;
                renderObjectImmediate( object, program );
            } else {
                _this.renderBufferDirect( camera, scene, geometry, material, object, group );
            }
            object.onAfterRender( _this, scene, camera, geometry, material, group );
            currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );
        }
        function initMaterial( material, scene, object ) {
            var materialProperties = properties.get( material );
            var lights = currentRenderState.state.lights;
            var shadowsArray = currentRenderState.state.shadowsArray;
            var lightsStateVersion = lights.state.version;
            var parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, _clipping.numPlanes, _clipping.numIntersection, object );
            var programCacheKey = programCache.getProgramCacheKey( parameters );
            var program = materialProperties.program;
            var programChange = true;
            if ( program === undefined ) {
                // new material
                material.addEventListener( 'dispose', onMaterialDispose );
            } else if ( program.cacheKey !== programCacheKey ) {
                // changed glsl or parameters
                releaseMaterialProgramReference( material );
            } else if ( materialProperties.lightsStateVersion !== lightsStateVersion ) {
                materialProperties.lightsStateVersion = lightsStateVersion;
                programChange = false;
            } else if ( parameters.shaderID !== undefined ) {
                // same glsl and uniform list
                return;
            } else {
                // only rebuild uniform list
                programChange = false;
            }
            if ( programChange ) {
                program = programCache.acquireProgram( parameters, programCacheKey );
                materialProperties.program = program;
                materialProperties.uniforms = parameters.uniforms;
                materialProperties.outputEncoding = parameters.outputEncoding;
                material.program = program;
            }
            var programAttributes = program.getAttributes();
            if ( material.morphTargets ) {
                material.numSupportedMorphTargets = 0;
                for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {
                    if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {
                        material.numSupportedMorphTargets ++;
                    }
                }
            }
            if ( material.morphNormals ) {
                material.numSupportedMorphNormals = 0;
                for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {
                    if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {
                        material.numSupportedMorphNormals ++;
                    }
                }
            }
            var uniforms = materialProperties.uniforms;
            if ( ! material.isShaderMaterial &&
                ! material.isRawShaderMaterial ||
                material.clipping === true ) {
                materialProperties.numClippingPlanes = _clipping.numPlanes;
                materialProperties.numIntersection = _clipping.numIntersection;
                uniforms.clippingPlanes = _clipping.uniform;
            }
            materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
            materialProperties.fog = scene.fog;
            // store the light setup it was created for
            materialProperties.needsLights = materialNeedsLights( material );
            materialProperties.lightsStateVersion = lightsStateVersion;
            if ( materialProperties.needsLights ) {
                // wire up the material to this renderer's lighting state
                uniforms.ambientLightColor.value = lights.state.ambient;
                uniforms.lightProbe.value = lights.state.probe;
                uniforms.directionalLights.value = lights.state.directional;
                uniforms.directionalLightShadows.value = lights.state.directionalShadow;
                uniforms.spotLights.value = lights.state.spot;
                uniforms.spotLightShadows.value = lights.state.spotShadow;
                uniforms.rectAreaLights.value = lights.state.rectArea;
                uniforms.pointLights.value = lights.state.point;
                uniforms.pointLightShadows.value = lights.state.pointShadow;
                uniforms.hemisphereLights.value = lights.state.hemi;
                uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
                uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
                uniforms.spotShadowMap.value = lights.state.spotShadowMap;
                uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
                uniforms.pointShadowMap.value = lights.state.pointShadowMap;
                uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
                // TODO (abelnation): add area lights shadow info to uniforms
            }
            var progUniforms = materialProperties.program.getUniforms(),
                uniformsList =
                    WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );
            materialProperties.uniformsList = uniformsList;
        }
        function setProgram( camera, scene, material, object ) {
            textures.resetTextureUnits();
            var fog = scene.fog;
            var environment = material.isMeshStandardMaterial ? scene.environment : null;
            var encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
            var materialProperties = properties.get( material );
            var lights = currentRenderState.state.lights;
            if ( _clippingEnabled ) {
                if ( _localClippingEnabled || camera !== _currentCamera ) {
                    var useCache =
                        camera === _currentCamera &&
                        material.id === _currentMaterialId;
                    // we might want to call this function with some ClippingGroup
                    // object instead of the material, once it becomes feasible
                    // (#8465, #8379)
                    _clipping.setState(
                        material.clippingPlanes, material.clipIntersection, material.clipShadows,
                        camera, materialProperties, useCache );
                }
            }
            if ( material.version === materialProperties.__version ) {
                if ( materialProperties.program === undefined ) {
                    initMaterial( material, scene, object );
                } else if ( material.fog && materialProperties.fog !== fog ) {
                    initMaterial( material, scene, object );
                } else if ( materialProperties.environment !== environment ) {
                    initMaterial( material, scene, object );
                } else if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) {
                    initMaterial( material, scene, object );
                } else if ( materialProperties.numClippingPlanes !== undefined &&
                    ( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
                    materialProperties.numIntersection !== _clipping.numIntersection ) ) {
                    initMaterial( material, scene, object );
                } else if ( materialProperties.outputEncoding !== encoding ) {
                    initMaterial( material, scene, object );
                }
            } else {
                initMaterial( material, scene, object );
                materialProperties.__version = material.version;
            }
            var refreshProgram = false;
            var refreshMaterial = false;
            var refreshLights = false;
            var program = materialProperties.program,
                p_uniforms = program.getUniforms(),
                m_uniforms = materialProperties.uniforms;
            if ( state.useProgram( program.program ) ) {
                refreshProgram = true;
                refreshMaterial = true;
                refreshLights = true;
            }
            if ( material.id !== _currentMaterialId ) {
                _currentMaterialId = material.id;
                refreshMaterial = true;
            }
            if ( refreshProgram || _currentCamera !== camera ) {
                p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );
                if ( capabilities.logarithmicDepthBuffer ) {
                    p_uniforms.setValue( _gl, 'logDepthBufFC',
                        2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
                }
                if ( _currentCamera !== camera ) {
                    _currentCamera = camera;
                    // lighting uniforms depend on the camera so enforce an update
                    // now, in case this material supports lights - or later, when
                    // the next material that does gets activated:
                    refreshMaterial = true;        // set to true on material change
                    refreshLights = true;        // remains set until update done
                }
                // load material specific uniforms
                // (shader material also gets them for the sake of genericity)
                if ( material.isShaderMaterial ||
                    material.isMeshPhongMaterial ||
                    material.isMeshToonMaterial ||
                    material.isMeshStandardMaterial ||
                    material.envMap ) {
                    var uCamPos = p_uniforms.map.cameraPosition;
                    if ( uCamPos !== undefined ) {
                        uCamPos.setValue( _gl,
                            _vector3.setFromMatrixPosition( camera.matrixWorld ) );
                    }
                }
                if ( material.isMeshPhongMaterial ||
                    material.isMeshToonMaterial ||
                    material.isMeshLambertMaterial ||
                    material.isMeshBasicMaterial ||
                    material.isMeshStandardMaterial ||
                    material.isShaderMaterial ) {
                    p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true );
                }
                if ( material.isMeshPhongMaterial ||
                    material.isMeshToonMaterial ||
                    material.isMeshLambertMaterial ||
                    material.isMeshBasicMaterial ||
                    material.isMeshStandardMaterial ||
                    material.isShaderMaterial ||
                    material.skinning ) {
                    p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
                }
            }
            // skinning uniforms must be set even if material didn't change
            // auto-setting of texture unit for bone texture must go before other textures
            // otherwise textures used for skinning can take over texture units reserved for other material textures
            if ( material.skinning ) {
                p_uniforms.setOptional( _gl, object, 'bindMatrix' );
                p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
                var skeleton = object.skeleton;
                if ( skeleton ) {
                    var bones = skeleton.bones;
                    if ( capabilities.floatVertexTextures ) {
                        if ( skeleton.boneTexture === undefined ) {
                            // layout (1 matrix = 4 pixels)
                            // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
                            // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
                            // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
                            // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
                            // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
                            var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
                            size = MathUtils.ceilPowerOfTwo( size );
                            size = Math.max( size, 4 );
                            var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
                            boneMatrices.set( skeleton.boneMatrices ); // copy current values
                            var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );
                            skeleton.boneMatrices = boneMatrices;
                            skeleton.boneTexture = boneTexture;
                            skeleton.boneTextureSize = size;
                        }
                        p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures );
                        p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );
                    } else {
                        p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );
                    }
                }
            }
            if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) {
                materialProperties.receiveShadow = object.receiveShadow;
                p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow );
            }
            if ( refreshMaterial ) {
                p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
                p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint );
                if ( materialProperties.needsLights ) {
                    // the current material requires lighting info
                    // note: all lighting uniforms are always set correctly
                    // they simply reference the renderer's state for their
                    // values
                    //
                    // use the current material's .needsUpdate flags to set
                    // the GL state when required
                    markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
                }
                // refresh uniforms common to several materials
                if ( fog && material.fog ) {
                    refreshUniformsFog( m_uniforms, fog );
                }
                if ( material.isMeshBasicMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                } else if ( material.isMeshLambertMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsLambert( m_uniforms, material );
                } else if ( material.isMeshToonMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsToon( m_uniforms, material );
                } else if ( material.isMeshPhongMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsPhong( m_uniforms, material );
                } else if ( material.isMeshStandardMaterial ) {
                    refreshUniformsCommon( m_uniforms, material, environment );
                    if ( material.isMeshPhysicalMaterial ) {
                        refreshUniformsPhysical( m_uniforms, material, environment );
                    } else {
                        refreshUniformsStandard( m_uniforms, material, environment );
                    }
                } else if ( material.isMeshMatcapMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsMatcap( m_uniforms, material );
                } else if ( material.isMeshDepthMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsDepth( m_uniforms, material );
                } else if ( material.isMeshDistanceMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsDistance( m_uniforms, material );
                } else if ( material.isMeshNormalMaterial ) {
                    refreshUniformsCommon( m_uniforms, material );
                    refreshUniformsNormal( m_uniforms, material );
                } else if ( material.isLineBasicMaterial ) {
                    refreshUniformsLine( m_uniforms, material );
                    if ( material.isLineDashedMaterial ) {
                        refreshUniformsDash( m_uniforms, material );
                    }
                } else if ( material.isPointsMaterial ) {
                    refreshUniformsPoints( m_uniforms, material );
                } else if ( material.isSpriteMaterial ) {
                    refreshUniformsSprites( m_uniforms, material );
                } else if ( material.isShadowMaterial ) {
                    m_uniforms.color.value.copy( material.color );
                    m_uniforms.opacity.value = material.opacity;
                }
                // RectAreaLight Texture
                // TODO (mrdoob): Find a nicer implementation
                if ( m_uniforms.ltc_1 !== undefined ) { m_uniforms.ltc_1.value = UniformsLib.LTC_1; }
                if ( m_uniforms.ltc_2 !== undefined ) { m_uniforms.ltc_2.value = UniformsLib.LTC_2; }
                WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );
                if ( material.isShaderMaterial ) {
                    material.uniformsNeedUpdate = false; // #15581
                }
            }
            if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {
                WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );
                material.uniformsNeedUpdate = false;
            }
            if ( material.isSpriteMaterial ) {
                p_uniforms.setValue( _gl, 'center', object.center );
            }
            // common matrices
            p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
            p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
            p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
            return program;
        }
        // Uniforms (refresh uniforms objects)
        function refreshUniformsCommon( uniforms, material, environment ) {
            uniforms.opacity.value = material.opacity;
            if ( material.color ) {
                uniforms.diffuse.value.copy( material.color );
            }
            if ( material.emissive ) {
                uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
            }
            if ( material.map ) {
                uniforms.map.value = material.map;
            }
            if ( material.alphaMap ) {
                uniforms.alphaMap.value = material.alphaMap;
            }
            if ( material.specularMap ) {
                uniforms.specularMap.value = material.specularMap;
            }
            var envMap = material.envMap || environment;
            if ( envMap ) {
                uniforms.envMap.value = envMap;
                uniforms.flipEnvMap.value = envMap.isCubeTexture ? - 1 : 1;
                uniforms.reflectivity.value = material.reflectivity;
                uniforms.refractionRatio.value = material.refractionRatio;
                uniforms.maxMipLevel.value = properties.get( envMap ).__maxMipLevel;
            }
            if ( material.lightMap ) {
                uniforms.lightMap.value = material.lightMap;
                uniforms.lightMapIntensity.value = material.lightMapIntensity;
            }
            if ( material.aoMap ) {
                uniforms.aoMap.value = material.aoMap;
                uniforms.aoMapIntensity.value = material.aoMapIntensity;
            }
            // uv repeat and offset setting priorities
            // 1. color map
            // 2. specular map
            // 3. normal map
            // 4. bump map
            // 5. alpha map
            // 6. emissive map
            var uvScaleMap;
            if ( material.map ) {
                uvScaleMap = material.map;
            } else if ( material.specularMap ) {
                uvScaleMap = material.specularMap;
            } else if ( material.displacementMap ) {
                uvScaleMap = material.displacementMap;
            } else if ( material.normalMap ) {
                uvScaleMap = material.normalMap;
            } else if ( material.bumpMap ) {
                uvScaleMap = material.bumpMap;
            } else if ( material.roughnessMap ) {
                uvScaleMap = material.roughnessMap;
            } else if ( material.metalnessMap ) {
                uvScaleMap = material.metalnessMap;
            } else if ( material.alphaMap ) {
                uvScaleMap = material.alphaMap;
            } else if ( material.emissiveMap ) {
                uvScaleMap = material.emissiveMap;
            }
            if ( uvScaleMap !== undefined ) {
                // backwards compatibility
                if ( uvScaleMap.isWebGLRenderTarget ) {
                    uvScaleMap = uvScaleMap.texture;
                }
                if ( uvScaleMap.matrixAutoUpdate === true ) {
                    uvScaleMap.updateMatrix();
                }
                uniforms.uvTransform.value.copy( uvScaleMap.matrix );
            }
            // uv repeat and offset setting priorities for uv2
            // 1. ao map
            // 2. light map
            var uv2ScaleMap;
            if ( material.aoMap ) {
                uv2ScaleMap = material.aoMap;
            } else if ( material.lightMap ) {
                uv2ScaleMap = material.lightMap;
            }
            if ( uv2ScaleMap !== undefined ) {
                // backwards compatibility
                if ( uv2ScaleMap.isWebGLRenderTarget ) {
                    uv2ScaleMap = uv2ScaleMap.texture;
                }
                if ( uv2ScaleMap.matrixAutoUpdate === true ) {
                    uv2ScaleMap.updateMatrix();
                }
                uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix );
            }
        }
        function refreshUniformsLine( uniforms, material ) {
            uniforms.diffuse.value.copy( material.color );
            uniforms.opacity.value = material.opacity;
        }
        function refreshUniformsDash( uniforms, material ) {
            uniforms.dashSize.value = material.dashSize;
            uniforms.totalSize.value = material.dashSize + material.gapSize;
            uniforms.scale.value = material.scale;
        }
        function refreshUniformsPoints( uniforms, material ) {
            uniforms.diffuse.value.copy( material.color );
            uniforms.opacity.value = material.opacity;
            uniforms.size.value = material.size * _pixelRatio;
            uniforms.scale.value = _height * 0.5;
            if ( material.map ) {
                uniforms.map.value = material.map;
            }
            if ( material.alphaMap ) {
                uniforms.alphaMap.value = material.alphaMap;
            }
            // uv repeat and offset setting priorities
            // 1. color map
            // 2. alpha map
            var uvScaleMap;
            if ( material.map ) {
                uvScaleMap = material.map;
            } else if ( material.alphaMap ) {
                uvScaleMap = material.alphaMap;
            }
            if ( uvScaleMap !== undefined ) {
                if ( uvScaleMap.matrixAutoUpdate === true ) {
                    uvScaleMap.updateMatrix();
                }
                uniforms.uvTransform.value.copy( uvScaleMap.matrix );
            }
        }
        function refreshUniformsSprites( uniforms, material ) {
            uniforms.diffuse.value.copy( material.color );
            uniforms.opacity.value = material.opacity;
            uniforms.rotation.value = material.rotation;
            if ( material.map ) {
                uniforms.map.value = material.map;
            }
            if ( material.alphaMap ) {
                uniforms.alphaMap.value = material.alphaMap;
            }
            // uv repeat and offset setting priorities
            // 1. color map
            // 2. alpha map
            var uvScaleMap;
            if ( material.map ) {
                uvScaleMap = material.map;
            } else if ( material.alphaMap ) {
                uvScaleMap = material.alphaMap;
            }
            if ( uvScaleMap !== undefined ) {
                if ( uvScaleMap.matrixAutoUpdate === true ) {
                    uvScaleMap.updateMatrix();
                }
                uniforms.uvTransform.value.copy( uvScaleMap.matrix );
            }
        }
        function refreshUniformsFog( uniforms, fog ) {
            uniforms.fogColor.value.copy( fog.color );
            if ( fog.isFog ) {
                uniforms.fogNear.value = fog.near;
                uniforms.fogFar.value = fog.far;
            } else if ( fog.isFogExp2 ) {
                uniforms.fogDensity.value = fog.density;
            }
        }
        function refreshUniformsLambert( uniforms, material ) {
            if ( material.emissiveMap ) {
                uniforms.emissiveMap.value = material.emissiveMap;
            }
        }
        function refreshUniformsPhong( uniforms, material ) {
            uniforms.specular.value.copy( material.specular );
            uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )
            if ( material.emissiveMap ) {
                uniforms.emissiveMap.value = material.emissiveMap;
            }
            if ( material.bumpMap ) {
                uniforms.bumpMap.value = material.bumpMap;
                uniforms.bumpScale.value = material.bumpScale;
                if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }
            }
            if ( material.normalMap ) {
                uniforms.normalMap.value = material.normalMap;
                uniforms.normalScale.value.copy( material.normalScale );
                if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }
            }
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
        }
        function refreshUniformsToon( uniforms, material ) {
            uniforms.specular.value.copy( material.specular );
            uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )
            if ( material.gradientMap ) {
                uniforms.gradientMap.value = material.gradientMap;
            }
            if ( material.emissiveMap ) {
                uniforms.emissiveMap.value = material.emissiveMap;
            }
            if ( material.bumpMap ) {
                uniforms.bumpMap.value = material.bumpMap;
                uniforms.bumpScale.value = material.bumpScale;
                if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }
            }
            if ( material.normalMap ) {
                uniforms.normalMap.value = material.normalMap;
                uniforms.normalScale.value.copy( material.normalScale );
                if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }
            }
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
        }
        function refreshUniformsStandard( uniforms, material, environment ) {
            uniforms.roughness.value = material.roughness;
            uniforms.metalness.value = material.metalness;
            if ( material.roughnessMap ) {
                uniforms.roughnessMap.value = material.roughnessMap;
            }
            if ( material.metalnessMap ) {
                uniforms.metalnessMap.value = material.metalnessMap;
            }
            if ( material.emissiveMap ) {
                uniforms.emissiveMap.value = material.emissiveMap;
            }
            if ( material.bumpMap ) {
                uniforms.bumpMap.value = material.bumpMap;
                uniforms.bumpScale.value = material.bumpScale;
                if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }
            }
            if ( material.normalMap ) {
                uniforms.normalMap.value = material.normalMap;
                uniforms.normalScale.value.copy( material.normalScale );
                if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }
            }
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
            if ( material.envMap || environment ) {
                //uniforms.envMap.value = material.envMap; // part of uniforms common
                uniforms.envMapIntensity.value = material.envMapIntensity;
            }
        }
        function refreshUniformsPhysical( uniforms, material, environment ) {
            refreshUniformsStandard( uniforms, material, environment );
            uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common
            uniforms.clearcoat.value = material.clearcoat;
            uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
            if ( material.sheen ) { uniforms.sheen.value.copy( material.sheen ); }
            if ( material.clearcoatMap ) {
                uniforms.clearcoatMap.value = material.clearcoatMap;
            }
            if ( material.clearcoatRoughnessMap ) {
                uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
            }
            if ( material.clearcoatNormalMap ) {
                uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale );
                uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
                if ( material.side === BackSide ) {
                    uniforms.clearcoatNormalScale.value.negate();
                }
            }
            uniforms.transparency.value = material.transparency;
        }
        function refreshUniformsMatcap( uniforms, material ) {
            if ( material.matcap ) {
                uniforms.matcap.value = material.matcap;
            }
            if ( material.bumpMap ) {
                uniforms.bumpMap.value = material.bumpMap;
                uniforms.bumpScale.value = material.bumpScale;
                if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }
            }
            if ( material.normalMap ) {
                uniforms.normalMap.value = material.normalMap;
                uniforms.normalScale.value.copy( material.normalScale );
                if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }
            }
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
        }
        function refreshUniformsDepth( uniforms, material ) {
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
        }
        function refreshUniformsDistance( uniforms, material ) {
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
            uniforms.referencePosition.value.copy( material.referencePosition );
            uniforms.nearDistance.value = material.nearDistance;
            uniforms.farDistance.value = material.farDistance;
        }
        function refreshUniformsNormal( uniforms, material ) {
            if ( material.bumpMap ) {
                uniforms.bumpMap.value = material.bumpMap;
                uniforms.bumpScale.value = material.bumpScale;
                if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; }
            }
            if ( material.normalMap ) {
                uniforms.normalMap.value = material.normalMap;
                uniforms.normalScale.value.copy( material.normalScale );
                if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); }
            }
            if ( material.displacementMap ) {
                uniforms.displacementMap.value = material.displacementMap;
                uniforms.displacementScale.value = material.displacementScale;
                uniforms.displacementBias.value = material.displacementBias;
            }
        }
        // If uniforms are marked as clean, they don't need to be loaded to the GPU.
        function markUniformsLightsNeedsUpdate( uniforms, value ) {
            uniforms.ambientLightColor.needsUpdate = value;
            uniforms.lightProbe.needsUpdate = value;
            uniforms.directionalLights.needsUpdate = value;
            uniforms.directionalLightShadows.needsUpdate = value;
            uniforms.pointLights.needsUpdate = value;
            uniforms.pointLightShadows.needsUpdate = value;
            uniforms.spotLights.needsUpdate = value;
            uniforms.spotLightShadows.needsUpdate = value;
            uniforms.rectAreaLights.needsUpdate = value;
            uniforms.hemisphereLights.needsUpdate = value;
        }
        function materialNeedsLights( material ) {
            return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial ||
                material.isMeshStandardMaterial || material.isShadowMaterial ||
                ( material.isShaderMaterial && material.lights === true );
        }
        //
        this.setFramebuffer = function ( value ) {
            if ( _framebuffer !== value && _currentRenderTarget === null ) { _gl.bindFramebuffer( 36160, value ); }
            _framebuffer = value;
        };
        this.getActiveCubeFace = function () {
            return _currentActiveCubeFace;
        };
        this.getActiveMipmapLevel = function () {
            return _currentActiveMipmapLevel;
        };
        this.getRenderTarget = function () {
            return _currentRenderTarget;
        };
        this.setRenderTarget = function ( renderTarget, activeCubeFace, activeMipmapLevel ) {
            _currentRenderTarget = renderTarget;
            _currentActiveCubeFace = activeCubeFace;
            _currentActiveMipmapLevel = activeMipmapLevel;
            if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {
                textures.setupRenderTarget( renderTarget );
            }
            var framebuffer = _framebuffer;
            var isCube = false;
            if ( renderTarget ) {
                var __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;
                if ( renderTarget.isWebGLCubeRenderTarget ) {
                    framebuffer = __webglFramebuffer[ activeCubeFace || 0 ];
                    isCube = true;
                } else if ( renderTarget.isWebGLMultisampleRenderTarget ) {
                    framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer;
                } else {
                    framebuffer = __webglFramebuffer;
                }
                _currentViewport.copy( renderTarget.viewport );
                _currentScissor.copy( renderTarget.scissor );
                _currentScissorTest = renderTarget.scissorTest;
            } else {
                _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor();
                _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor();
                _currentScissorTest = _scissorTest;
            }
            if ( _currentFramebuffer !== framebuffer ) {
                _gl.bindFramebuffer( 36160, framebuffer );
                _currentFramebuffer = framebuffer;
            }
            state.viewport( _currentViewport );
            state.scissor( _currentScissor );
            state.setScissorTest( _currentScissorTest );
            if ( isCube ) {
                var textureProperties = properties.get( renderTarget.texture );
                _gl.framebufferTexture2D( 36160, 36064, 34069 + ( activeCubeFace || 0 ), textureProperties.__webglTexture, activeMipmapLevel || 0 );
            }
        };
        this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) {
            if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {
                console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
                return;
            }
            var framebuffer = properties.get( renderTarget ).__webglFramebuffer;
            if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) {
                framebuffer = framebuffer[ activeCubeFaceIndex ];
            }
            if ( framebuffer ) {
                var restore = false;
                if ( framebuffer !== _currentFramebuffer ) {
                    _gl.bindFramebuffer( 36160, framebuffer );
                    restore = true;
                }
                try {
                    var texture = renderTarget.texture;
                    var textureFormat = texture.format;
                    var textureType = texture.type;
                    if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) {
                        console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
                        return;
                    }
                    if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // IE11, Edge and Chrome Mac < 52 (#9513)
                        ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
                        ! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) {
                        console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
                        return;
                    }
                    if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) {
                        // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
                        if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {
                            _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );
                        }
                    } else {
                        console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );
                    }
                } finally {
                    if ( restore ) {
                        _gl.bindFramebuffer( 36160, _currentFramebuffer );
                    }
                }
            }
        };
        this.copyFramebufferToTexture = function ( position, texture, level ) {
            if ( level === undefined ) { level = 0; }
            var levelScale = Math.pow( 2, - level );
            var width = Math.floor( texture.image.width * levelScale );
            var height = Math.floor( texture.image.height * levelScale );
            var glFormat = utils.convert( texture.format );
            textures.setTexture2D( texture, 0 );
            _gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 );
            state.unbindTexture();
        };
        this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) {
            if ( level === undefined ) { level = 0; }
            var width = srcTexture.image.width;
            var height = srcTexture.image.height;
            var glFormat = utils.convert( dstTexture.format );
            var glType = utils.convert( dstTexture.type );
            textures.setTexture2D( dstTexture, 0 );
            if ( srcTexture.isDataTexture ) {
                _gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data );
            } else {
                if ( srcTexture.isCompressedTexture ) {
                    _gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data );
                } else {
                    _gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image );
                }
            }
            // Generate mipmaps only when copying level 0
            if ( level === 0 && dstTexture.generateMipmaps ) { _gl.generateMipmap( 3553 ); }
            state.unbindTexture();
        };
        this.initTexture = function ( texture ) {
            textures.setTexture2D( texture, 0 );
            state.unbindTexture();
        };
        if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
            __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef
        }
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     */
    function FogExp2( color, density ) {
        this.name = '';
        this.color = new Color( color );
        this.density = ( density !== undefined ) ? density : 0.00025;
    }
    Object.assign( FogExp2.prototype, {
        isFogExp2: true,
        clone: function () {
            return new FogExp2( this.color, this.density );
        },
        toJSON: function ( /* meta */ ) {
            return {
                type: 'FogExp2',
                color: this.color.getHex(),
                density: this.density
            };
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     */
    function Fog( color, near, far ) {
        this.name = '';
        this.color = new Color( color );
        this.near = ( near !== undefined ) ? near : 1;
        this.far = ( far !== undefined ) ? far : 1000;
    }
    Object.assign( Fog.prototype, {
        isFog: true,
        clone: function () {
            return new Fog( this.color, this.near, this.far );
        },
        toJSON: function ( /* meta */ ) {
            return {
                type: 'Fog',
                color: this.color.getHex(),
                near: this.near,
                far: this.far
            };
        }
    } );
    /**
     * @author benaadams / https://twitter.com/ben_a_adams
     */
    function InterleavedBuffer( array, stride ) {
        this.array = array;
        this.stride = stride;
        this.count = array !== undefined ? array.length / stride : 0;
        this.usage = StaticDrawUsage;
        this.updateRange = { offset: 0, count: - 1 };
        this.version = 0;
    }
    Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {
        set: function ( value ) {
            if ( value === true ) { this.version ++; }
        }
    } );
    Object.assign( InterleavedBuffer.prototype, {
        isInterleavedBuffer: true,
        onUploadCallback: function () {},
        setUsage: function ( value ) {
            this.usage = value;
            return this;
        },
        copy: function ( source ) {
            this.array = new source.array.constructor( source.array );
            this.count = source.count;
            this.stride = source.stride;
            this.usage = source.usage;
            return this;
        },
        copyAt: function ( index1, attribute, index2 ) {
            index1 *= this.stride;
            index2 *= attribute.stride;
            for ( var i = 0, l = this.stride; i < l; i ++ ) {
                this.array[ index1 + i ] = attribute.array[ index2 + i ];
            }
            return this;
        },
        set: function ( value, offset ) {
            if ( offset === undefined ) { offset = 0; }
            this.array.set( value, offset );
            return this;
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        onUpload: function ( callback ) {
            this.onUploadCallback = callback;
            return this;
        }
    } );
    /**
     * @author benaadams / https://twitter.com/ben_a_adams
     */
    var _vector$6 = new Vector3();
    function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {
        this.data = interleavedBuffer;
        this.itemSize = itemSize;
        this.offset = offset;
        this.normalized = normalized === true;
    }
    Object.defineProperties( InterleavedBufferAttribute.prototype, {
        count: {
            get: function () {
                return this.data.count;
            }
        },
        array: {
            get: function () {
                return this.data.array;
            }
        }
    } );
    Object.assign( InterleavedBufferAttribute.prototype, {
        isInterleavedBufferAttribute: true,
        applyMatrix4: function ( m ) {
            for ( var i = 0, l = this.data.count; i < l; i ++ ) {
                _vector$6.x = this.getX( i );
                _vector$6.y = this.getY( i );
                _vector$6.z = this.getZ( i );
                _vector$6.applyMatrix4( m );
                this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z );
            }
            return this;
        },
        setX: function ( index, x ) {
            this.data.array[ index * this.data.stride + this.offset ] = x;
            return this;
        },
        setY: function ( index, y ) {
            this.data.array[ index * this.data.stride + this.offset + 1 ] = y;
            return this;
        },
        setZ: function ( index, z ) {
            this.data.array[ index * this.data.stride + this.offset + 2 ] = z;
            return this;
        },
        setW: function ( index, w ) {
            this.data.array[ index * this.data.stride + this.offset + 3 ] = w;
            return this;
        },
        getX: function ( index ) {
            return this.data.array[ index * this.data.stride + this.offset ];
        },
        getY: function ( index ) {
            return this.data.array[ index * this.data.stride + this.offset + 1 ];
        },
        getZ: function ( index ) {
            return this.data.array[ index * this.data.stride + this.offset + 2 ];
        },
        getW: function ( index ) {
            return this.data.array[ index * this.data.stride + this.offset + 3 ];
        },
        setXY: function ( index, x, y ) {
            index = index * this.data.stride + this.offset;
            this.data.array[ index + 0 ] = x;
            this.data.array[ index + 1 ] = y;
            return this;
        },
        setXYZ: function ( index, x, y, z ) {
            index = index * this.data.stride + this.offset;
            this.data.array[ index + 0 ] = x;
            this.data.array[ index + 1 ] = y;
            this.data.array[ index + 2 ] = z;
            return this;
        },
        setXYZW: function ( index, x, y, z, w ) {
            index = index * this.data.stride + this.offset;
            this.data.array[ index + 0 ] = x;
            this.data.array[ index + 1 ] = y;
            this.data.array[ index + 2 ] = z;
            this.data.array[ index + 3 ] = w;
            return this;
        }
    } );
    /**
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * map: new THREE.Texture( ),
     * alphaMap: new THREE.Texture( ),
     * rotation: ,
     * sizeAttenuation:
     * }
     */
    function SpriteMaterial( parameters ) {
        Material.call( this );
        this.type = 'SpriteMaterial';
        this.color = new Color( 0xffffff );
        this.map = null;
        this.alphaMap = null;
        this.rotation = 0;
        this.sizeAttenuation = true;
        this.transparent = true;
        this.setValues( parameters );
    }
    SpriteMaterial.prototype = Object.create( Material.prototype );
    SpriteMaterial.prototype.constructor = SpriteMaterial;
    SpriteMaterial.prototype.isSpriteMaterial = true;
    SpriteMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.map = source.map;
        this.alphaMap = source.alphaMap;
        this.rotation = source.rotation;
        this.sizeAttenuation = source.sizeAttenuation;
        return this;
    };
    /**
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     */
    var _geometry;
    var _intersectPoint = new Vector3();
    var _worldScale = new Vector3();
    var _mvPosition = new Vector3();
    var _alignedPosition = new Vector2();
    var _rotatedPosition = new Vector2();
    var _viewWorldMatrix = new Matrix4();
    var _vA$1 = new Vector3();
    var _vB$1 = new Vector3();
    var _vC$1 = new Vector3();
    var _uvA$1 = new Vector2();
    var _uvB$1 = new Vector2();
    var _uvC$1 = new Vector2();
    function Sprite( material ) {
        Object3D.call( this );
        this.type = 'Sprite';
        if ( _geometry === undefined ) {
            _geometry = new BufferGeometry();
            var float32Array = new Float32Array( [
                - 0.5, - 0.5, 0, 0, 0,
                0.5, - 0.5, 0, 1, 0,
                0.5, 0.5, 0, 1, 1,
                - 0.5, 0.5, 0, 0, 1
            ] );
            var interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
            _geometry.setIndex( [ 0, 1, 2,    0, 2, 3 ] );
            _geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
            _geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
        }
        this.geometry = _geometry;
        this.material = ( material !== undefined ) ? material : new SpriteMaterial();
        this.center = new Vector2( 0.5, 0.5 );
    }
    Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Sprite,
        isSprite: true,
        raycast: function ( raycaster, intersects ) {
            if ( raycaster.camera === null ) {
                console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' );
            }
            _worldScale.setFromMatrixScale( this.matrixWorld );
            _viewWorldMatrix.copy( raycaster.camera.matrixWorld );
            this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld );
            _mvPosition.setFromMatrixPosition( this.modelViewMatrix );
            if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) {
                _worldScale.multiplyScalar( - _mvPosition.z );
            }
            var rotation = this.material.rotation;
            var sin, cos;
            if ( rotation !== 0 ) {
                cos = Math.cos( rotation );
                sin = Math.sin( rotation );
            }
            var center = this.center;
            transformVertex( _vA$1.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
            transformVertex( _vB$1.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
            transformVertex( _vC$1.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
            _uvA$1.set( 0, 0 );
            _uvB$1.set( 1, 0 );
            _uvC$1.set( 1, 1 );
            // check first triangle
            var intersect = raycaster.ray.intersectTriangle( _vA$1, _vB$1, _vC$1, false, _intersectPoint );
            if ( intersect === null ) {
                // check second triangle
                transformVertex( _vB$1.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
                _uvB$1.set( 0, 1 );
                intersect = raycaster.ray.intersectTriangle( _vA$1, _vC$1, _vB$1, false, _intersectPoint );
                if ( intersect === null ) {
                    return;
                }
            }
            var distance = raycaster.ray.origin.distanceTo( _intersectPoint );
            if ( distance < raycaster.near || distance > raycaster.far ) { return; }
            intersects.push( {
                distance: distance,
                point: _intersectPoint.clone(),
                uv: Triangle.getUV( _intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ),
                face: null,
                object: this
            } );
        },
        clone: function () {
            return new this.constructor( this.material ).copy( this );
        },
        copy: function ( source ) {
            Object3D.prototype.copy.call( this, source );
            if ( source.center !== undefined ) { this.center.copy( source.center ); }
            return this;
        }
    } );
    function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) {
        // compute position in camera space
        _alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale );
        // to check if rotation is not zero
        if ( sin !== undefined ) {
            _rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y );
            _rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y );
        } else {
            _rotatedPosition.copy( _alignedPosition );
        }
        vertexPosition.copy( mvPosition );
        vertexPosition.x += _rotatedPosition.x;
        vertexPosition.y += _rotatedPosition.y;
        // transform to world space
        vertexPosition.applyMatrix4( _viewWorldMatrix );
    }
    /**
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     * @author mrdoob / http://mrdoob.com/
     */
    var _v1$4 = new Vector3();
    var _v2$2 = new Vector3();
    function LOD() {
        Object3D.call( this );
        this._currentLevel = 0;
        this.type = 'LOD';
        Object.defineProperties( this, {
            levels: {
                enumerable: true,
                value: []
            }
        } );
        this.autoUpdate = true;
    }
    LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: LOD,
        isLOD: true,
        copy: function ( source ) {
            Object3D.prototype.copy.call( this, source, false );
            var levels = source.levels;
            for ( var i = 0, l = levels.length; i < l; i ++ ) {
                var level = levels[ i ];
                this.addLevel( level.object.clone(), level.distance );
            }
            this.autoUpdate = source.autoUpdate;
            return this;
        },
        addLevel: function ( object, distance ) {
            if ( distance === undefined ) { distance = 0; }
            distance = Math.abs( distance );
            var levels = this.levels;
            for ( var l = 0; l < levels.length; l ++ ) {
                if ( distance < levels[ l ].distance ) {
                    break;
                }
            }
            levels.splice( l, 0, { distance: distance, object: object } );
            this.add( object );
            return this;
        },
        getCurrentLevel: function () {
            return this._currentLevel;
        },
        getObjectForDistance: function ( distance ) {
            var levels = this.levels;
            if ( levels.length > 0 ) {
                for ( var i = 1, l = levels.length; i < l; i ++ ) {
                    if ( distance < levels[ i ].distance ) {
                        break;
                    }
                }
                return levels[ i - 1 ].object;
            }
            return null;
        },
        raycast: function ( raycaster, intersects ) {
            var levels = this.levels;
            if ( levels.length > 0 ) {
                _v1$4.setFromMatrixPosition( this.matrixWorld );
                var distance = raycaster.ray.origin.distanceTo( _v1$4 );
                this.getObjectForDistance( distance ).raycast( raycaster, intersects );
            }
        },
        update: function ( camera ) {
            var levels = this.levels;
            if ( levels.length > 1 ) {
                _v1$4.setFromMatrixPosition( camera.matrixWorld );
                _v2$2.setFromMatrixPosition( this.matrixWorld );
                var distance = _v1$4.distanceTo( _v2$2 ) / camera.zoom;
                levels[ 0 ].object.visible = true;
                for ( var i = 1, l = levels.length; i < l; i ++ ) {
                    if ( distance >= levels[ i ].distance ) {
                        levels[ i - 1 ].object.visible = false;
                        levels[ i ].object.visible = true;
                    } else {
                        break;
                    }
                }
                this._currentLevel = i - 1;
                for ( ; i < l; i ++ ) {
                    levels[ i ].object.visible = false;
                }
            }
        },
        toJSON: function ( meta ) {
            var data = Object3D.prototype.toJSON.call( this, meta );
            if ( this.autoUpdate === false ) { data.object.autoUpdate = false; }
            data.object.levels = [];
            var levels = this.levels;
            for ( var i = 0, l = levels.length; i < l; i ++ ) {
                var level = levels[ i ];
                data.object.levels.push( {
                    object: level.object.uuid,
                    distance: level.distance
                } );
            }
            return data;
        }
    } );
    /**
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     * @author ikerr / http://verold.com
     */
    function SkinnedMesh( geometry, material ) {
        if ( geometry && geometry.isGeometry ) {
            console.error( 'THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
        }
        Mesh.call( this, geometry, material );
        this.type = 'SkinnedMesh';
        this.bindMode = 'attached';
        this.bindMatrix = new Matrix4();
        this.bindMatrixInverse = new Matrix4();
    }
    SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {
        constructor: SkinnedMesh,
        isSkinnedMesh: true,
        bind: function ( skeleton, bindMatrix ) {
            this.skeleton = skeleton;
            if ( bindMatrix === undefined ) {
                this.updateMatrixWorld( true );
                this.skeleton.calculateInverses();
                bindMatrix = this.matrixWorld;
            }
            this.bindMatrix.copy( bindMatrix );
            this.bindMatrixInverse.getInverse( bindMatrix );
        },
        pose: function () {
            this.skeleton.pose();
        },
        normalizeSkinWeights: function () {
            var vector = new Vector4();
            var skinWeight = this.geometry.attributes.skinWeight;
            for ( var i = 0, l = skinWeight.count; i < l; i ++ ) {
                vector.x = skinWeight.getX( i );
                vector.y = skinWeight.getY( i );
                vector.z = skinWeight.getZ( i );
                vector.w = skinWeight.getW( i );
                var scale = 1.0 / vector.manhattanLength();
                if ( scale !== Infinity ) {
                    vector.multiplyScalar( scale );
                } else {
                    vector.set( 1, 0, 0, 0 ); // do something reasonable
                }
                skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w );
            }
        },
        updateMatrixWorld: function ( force ) {
            Mesh.prototype.updateMatrixWorld.call( this, force );
            if ( this.bindMode === 'attached' ) {
                this.bindMatrixInverse.getInverse( this.matrixWorld );
            } else if ( this.bindMode === 'detached' ) {
                this.bindMatrixInverse.getInverse( this.bindMatrix );
            } else {
                console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );
            }
        },
        clone: function () {
            return new this.constructor( this.geometry, this.material ).copy( this );
        },
        boneTransform: ( function () {
            var basePosition = new Vector3();
            var skinIndex = new Vector4();
            var skinWeight = new Vector4();
            var vector = new Vector3();
            var matrix = new Matrix4();
            return function ( index, target ) {
                var skeleton = this.skeleton;
                var geometry = this.geometry;
                skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index );
                skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index );
                basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix );
                target.set( 0, 0, 0 );
                for ( var i = 0; i < 4; i ++ ) {
                    var weight = skinWeight.getComponent( i );
                    if ( weight !== 0 ) {
                        var boneIndex = skinIndex.getComponent( i );
                        matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] );
                        target.addScaledVector( vector.copy( basePosition ).applyMatrix4( matrix ), weight );
                    }
                }
                return target.applyMatrix4( this.bindMatrixInverse );
            };
        }() )
    } );
    /**
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     * @author michael guerrero / http://realitymeltdown.com
     * @author ikerr / http://verold.com
     */
    var _offsetMatrix = new Matrix4();
    var _identityMatrix = new Matrix4();
    function Skeleton( bones, boneInverses ) {
        // copy the bone array
        bones = bones || [];
        this.bones = bones.slice( 0 );
        this.boneMatrices = new Float32Array( this.bones.length * 16 );
        this.frame = - 1;
        // use the supplied bone inverses or calculate the inverses
        if ( boneInverses === undefined ) {
            this.calculateInverses();
        } else {
            if ( this.bones.length === boneInverses.length ) {
                this.boneInverses = boneInverses.slice( 0 );
            } else {
                console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );
                this.boneInverses = [];
                for ( var i = 0, il = this.bones.length; i < il; i ++ ) {
                    this.boneInverses.push( new Matrix4() );
                }
            }
        }
    }
    Object.assign( Skeleton.prototype, {
        calculateInverses: function () {
            this.boneInverses = [];
            for ( var i = 0, il = this.bones.length; i < il; i ++ ) {
                var inverse = new Matrix4();
                if ( this.bones[ i ] ) {
                    inverse.getInverse( this.bones[ i ].matrixWorld );
                }
                this.boneInverses.push( inverse );
            }
        },
        pose: function () {
            var bone, i, il;
            // recover the bind-time world matrices
            for ( i = 0, il = this.bones.length; i < il; i ++ ) {
                bone = this.bones[ i ];
                if ( bone ) {
                    bone.matrixWorld.getInverse( this.boneInverses[ i ] );
                }
            }
            // compute the local matrices, positions, rotations and scales
            for ( i = 0, il = this.bones.length; i < il; i ++ ) {
                bone = this.bones[ i ];
                if ( bone ) {
                    if ( bone.parent && bone.parent.isBone ) {
                        bone.matrix.getInverse( bone.parent.matrixWorld );
                        bone.matrix.multiply( bone.matrixWorld );
                    } else {
                        bone.matrix.copy( bone.matrixWorld );
                    }
                    bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );
                }
            }
        },
        update: function () {
            var bones = this.bones;
            var boneInverses = this.boneInverses;
            var boneMatrices = this.boneMatrices;
            var boneTexture = this.boneTexture;
            // flatten bone matrices to array
            for ( var i = 0, il = bones.length; i < il; i ++ ) {
                // compute the offset between the current and the original transform
                var matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix;
                _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
                _offsetMatrix.toArray( boneMatrices, i * 16 );
            }
            if ( boneTexture !== undefined ) {
                boneTexture.needsUpdate = true;
            }
        },
        clone: function () {
            return new Skeleton( this.bones, this.boneInverses );
        },
        getBoneByName: function ( name ) {
            for ( var i = 0, il = this.bones.length; i < il; i ++ ) {
                var bone = this.bones[ i ];
                if ( bone.name === name ) {
                    return bone;
                }
            }
            return undefined;
        },
        dispose: function ( ) {
            if ( this.boneTexture ) {
                this.boneTexture.dispose();
                this.boneTexture = undefined;
            }
        }
    } );
    /**
     * @author mikael emtinger / http://gomo.se/
     * @author alteredq / http://alteredqualia.com/
     * @author ikerr / http://verold.com
     */
    function Bone() {
        Object3D.call( this );
        this.type = 'Bone';
    }
    Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Bone,
        isBone: true
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var _instanceLocalMatrix = new Matrix4();
    var _instanceWorldMatrix = new Matrix4();
    var _instanceIntersects = [];
    var _mesh = new Mesh();
    function InstancedMesh( geometry, material, count ) {
        Mesh.call( this, geometry, material );
        this.instanceMatrix = new BufferAttribute( new Float32Array( count * 16 ), 16 );
        this.count = count;
        this.frustumCulled = false;
    }
    InstancedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {
        constructor: InstancedMesh,
        isInstancedMesh: true,
        getMatrixAt: function ( index, matrix ) {
            matrix.fromArray( this.instanceMatrix.array, index * 16 );
        },
        raycast: function ( raycaster, intersects ) {
            var matrixWorld = this.matrixWorld;
            var raycastTimes = this.count;
            _mesh.geometry = this.geometry;
            _mesh.material = this.material;
            if ( _mesh.material === undefined ) { return; }
            for ( var instanceId = 0; instanceId < raycastTimes; instanceId ++ ) {
                // calculate the world matrix for each instance
                this.getMatrixAt( instanceId, _instanceLocalMatrix );
                _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix );
                // the mesh represents this single instance
                _mesh.matrixWorld = _instanceWorldMatrix;
                _mesh.raycast( raycaster, _instanceIntersects );
                // process the result of raycast
                for ( var i = 0, l = _instanceIntersects.length; i < l; i ++ ) {
                    var intersect = _instanceIntersects[ i ];
                    intersect.instanceId = instanceId;
                    intersect.object = this;
                    intersects.push( intersect );
                }
                _instanceIntersects.length = 0;
            }
        },
        setMatrixAt: function ( index, matrix ) {
            matrix.toArray( this.instanceMatrix.array, index * 16 );
        },
        updateMorphTargets: function () {
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * opacity: ,
     *
     * linewidth: ,
     * linecap: "round",
     * linejoin: "round"
     * }
     */
    function LineBasicMaterial( parameters ) {
        Material.call( this );
        this.type = 'LineBasicMaterial';
        this.color = new Color( 0xffffff );
        this.linewidth = 1;
        this.linecap = 'round';
        this.linejoin = 'round';
        this.setValues( parameters );
    }
    LineBasicMaterial.prototype = Object.create( Material.prototype );
    LineBasicMaterial.prototype.constructor = LineBasicMaterial;
    LineBasicMaterial.prototype.isLineBasicMaterial = true;
    LineBasicMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.linewidth = source.linewidth;
        this.linecap = source.linecap;
        this.linejoin = source.linejoin;
        return this;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var _start = new Vector3();
    var _end = new Vector3();
    var _inverseMatrix$1 = new Matrix4();
    var _ray$1 = new Ray();
    var _sphere$2 = new Sphere();
    function Line( geometry, material, mode ) {
        if ( mode === 1 ) {
            console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' );
        }
        Object3D.call( this );
        this.type = 'Line';
        this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
        this.material = material !== undefined ? material : new LineBasicMaterial();
    }
    Line.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Line,
        isLine: true,
        computeLineDistances: function () {
            var geometry = this.geometry;
            if ( geometry.isBufferGeometry ) {
                // we assume non-indexed geometry
                if ( geometry.index === null ) {
                    var positionAttribute = geometry.attributes.position;
                    var lineDistances = [ 0 ];
                    for ( var i = 1, l = positionAttribute.count; i < l; i ++ ) {
                        _start.fromBufferAttribute( positionAttribute, i - 1 );
                        _end.fromBufferAttribute( positionAttribute, i );
                        lineDistances[ i ] = lineDistances[ i - 1 ];
                        lineDistances[ i ] += _start.distanceTo( _end );
                    }
                    geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );
                } else {
                    console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );
                }
            } else if ( geometry.isGeometry ) {
                var vertices = geometry.vertices;
                var lineDistances = geometry.lineDistances;
                lineDistances[ 0 ] = 0;
                for ( var i = 1, l = vertices.length; i < l; i ++ ) {
                    lineDistances[ i ] = lineDistances[ i - 1 ];
                    lineDistances[ i ] += vertices[ i - 1 ].distanceTo( vertices[ i ] );
                }
            }
            return this;
        },
        raycast: function ( raycaster, intersects ) {
            var geometry = this.geometry;
            var matrixWorld = this.matrixWorld;
            var threshold = raycaster.params.Line.threshold;
            // Checking boundingSphere distance to ray
            if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }
            _sphere$2.copy( geometry.boundingSphere );
            _sphere$2.applyMatrix4( matrixWorld );
            _sphere$2.radius += threshold;
            if ( raycaster.ray.intersectsSphere( _sphere$2 ) === false ) { return; }
            //
            _inverseMatrix$1.getInverse( matrixWorld );
            _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 );
            var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
            var localThresholdSq = localThreshold * localThreshold;
            var vStart = new Vector3();
            var vEnd = new Vector3();
            var interSegment = new Vector3();
            var interRay = new Vector3();
            var step = ( this && this.isLineSegments ) ? 2 : 1;
            if ( geometry.isBufferGeometry ) {
                var index = geometry.index;
                var attributes = geometry.attributes;
                var positions = attributes.position.array;
                if ( index !== null ) {
                    var indices = index.array;
                    for ( var i = 0, l = indices.length - 1; i < l; i += step ) {
                        var a = indices[ i ];
                        var b = indices[ i + 1 ];
                        vStart.fromArray( positions, a * 3 );
                        vEnd.fromArray( positions, b * 3 );
                        var distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
                        if ( distSq > localThresholdSq ) { continue; }
                        interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
                        var distance = raycaster.ray.origin.distanceTo( interRay );
                        if ( distance < raycaster.near || distance > raycaster.far ) { continue; }
                        intersects.push( {
                            distance: distance,
                            // What do we want? intersection point on the ray or on the segment??
                            // point: raycaster.ray.at( distance ),
                            point: interSegment.clone().applyMatrix4( this.matrixWorld ),
                            index: i,
                            face: null,
                            faceIndex: null,
                            object: this
                        } );
                    }
                } else {
                    for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
                        vStart.fromArray( positions, 3 * i );
                        vEnd.fromArray( positions, 3 * i + 3 );
                        var distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
                        if ( distSq > localThresholdSq ) { continue; }
                        interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
                        var distance = raycaster.ray.origin.distanceTo( interRay );
                        if ( distance < raycaster.near || distance > raycaster.far ) { continue; }
                        intersects.push( {
                            distance: distance,
                            // What do we want? intersection point on the ray or on the segment??
                            // point: raycaster.ray.at( distance ),
                            point: interSegment.clone().applyMatrix4( this.matrixWorld ),
                            index: i,
                            face: null,
                            faceIndex: null,
                            object: this
                        } );
                    }
                }
            } else if ( geometry.isGeometry ) {
                var vertices = geometry.vertices;
                var nbVertices = vertices.length;
                for ( var i = 0; i < nbVertices - 1; i += step ) {
                    var distSq = _ray$1.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
                    if ( distSq > localThresholdSq ) { continue; }
                    interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
                    var distance = raycaster.ray.origin.distanceTo( interRay );
                    if ( distance < raycaster.near || distance > raycaster.far ) { continue; }
                    intersects.push( {
                        distance: distance,
                        // What do we want? intersection point on the ray or on the segment??
                        // point: raycaster.ray.at( distance ),
                        point: interSegment.clone().applyMatrix4( this.matrixWorld ),
                        index: i,
                        face: null,
                        faceIndex: null,
                        object: this
                    } );
                }
            }
        },
        clone: function () {
            return new this.constructor( this.geometry, this.material ).copy( this );
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var _start$1 = new Vector3();
    var _end$1 = new Vector3();
    function LineSegments( geometry, material ) {
        Line.call( this, geometry, material );
        this.type = 'LineSegments';
    }
    LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {
        constructor: LineSegments,
        isLineSegments: true,
        computeLineDistances: function () {
            var geometry = this.geometry;
            if ( geometry.isBufferGeometry ) {
                // we assume non-indexed geometry
                if ( geometry.index === null ) {
                    var positionAttribute = geometry.attributes.position;
                    var lineDistances = [];
                    for ( var i = 0, l = positionAttribute.count; i < l; i += 2 ) {
                        _start$1.fromBufferAttribute( positionAttribute, i );
                        _end$1.fromBufferAttribute( positionAttribute, i + 1 );
                        lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
                        lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );
                    }
                    geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );
                } else {
                    console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );
                }
            } else if ( geometry.isGeometry ) {
                var vertices = geometry.vertices;
                var lineDistances = geometry.lineDistances;
                for ( var i = 0, l = vertices.length; i < l; i += 2 ) {
                    _start$1.copy( vertices[ i ] );
                    _end$1.copy( vertices[ i + 1 ] );
                    lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
                    lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );
                }
            }
            return this;
        }
    } );
    /**
     * @author mgreter / http://github.com/mgreter
     */
    function LineLoop( geometry, material ) {
        Line.call( this, geometry, material );
        this.type = 'LineLoop';
    }
    LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {
        constructor: LineLoop,
        isLineLoop: true,
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * opacity: ,
     * map: new THREE.Texture( ),
     * alphaMap: new THREE.Texture( ),
     *
     * size: ,
     * sizeAttenuation:
     *
     * morphTargets:
     * }
     */
    function PointsMaterial( parameters ) {
        Material.call( this );
        this.type = 'PointsMaterial';
        this.color = new Color( 0xffffff );
        this.map = null;
        this.alphaMap = null;
        this.size = 1;
        this.sizeAttenuation = true;
        this.morphTargets = false;
        this.setValues( parameters );
    }
    PointsMaterial.prototype = Object.create( Material.prototype );
    PointsMaterial.prototype.constructor = PointsMaterial;
    PointsMaterial.prototype.isPointsMaterial = true;
    PointsMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.map = source.map;
        this.alphaMap = source.alphaMap;
        this.size = source.size;
        this.sizeAttenuation = source.sizeAttenuation;
        this.morphTargets = source.morphTargets;
        return this;
    };
    /**
     * @author alteredq / http://alteredqualia.com/
     */
    var _inverseMatrix$2 = new Matrix4();
    var _ray$2 = new Ray();
    var _sphere$3 = new Sphere();
    var _position$1 = new Vector3();
    function Points( geometry, material ) {
        Object3D.call( this );
        this.type = 'Points';
        this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
        this.material = material !== undefined ? material : new PointsMaterial();
        this.updateMorphTargets();
    }
    Points.prototype = Object.assign( Object.create( Object3D.prototype ), {
        constructor: Points,
        isPoints: true,
        raycast: function ( raycaster, intersects ) {
            var geometry = this.geometry;
            var matrixWorld = this.matrixWorld;
            var threshold = raycaster.params.Points.threshold;
            // Checking boundingSphere distance to ray
            if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); }
            _sphere$3.copy( geometry.boundingSphere );
            _sphere$3.applyMatrix4( matrixWorld );
            _sphere$3.radius += threshold;
            if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) { return; }
            //
            _inverseMatrix$2.getInverse( matrixWorld );
            _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );
            var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
            var localThresholdSq = localThreshold * localThreshold;
            if ( geometry.isBufferGeometry ) {
                var index = geometry.index;
                var attributes = geometry.attributes;
                var positions = attributes.position.array;
                if ( index !== null ) {
                    var indices = index.array;
                    for ( var i = 0, il = indices.length; i < il; i ++ ) {
                        var a = indices[ i ];
                        _position$1.fromArray( positions, a * 3 );
                        testPoint( _position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this );
                    }
                } else {
                    for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {
                        _position$1.fromArray( positions, i * 3 );
                        testPoint( _position$1, i, localThresholdSq, matrixWorld, raycaster, intersects, this );
                    }
                }
            } else {
                var vertices = geometry.vertices;
                for ( var i = 0, l = vertices.length; i < l; i ++ ) {
                    testPoint( vertices[ i ], i, localThresholdSq, matrixWorld, raycaster, intersects, this );
                }
            }
        },
        updateMorphTargets: function () {
            var geometry = this.geometry;
            var m, ml, name;
            if ( geometry.isBufferGeometry ) {
                var morphAttributes = geometry.morphAttributes;
                var keys = Object.keys( morphAttributes );
                if ( keys.length > 0 ) {
                    var morphAttribute = morphAttributes[ keys[ 0 ] ];
                    if ( morphAttribute !== undefined ) {
                        this.morphTargetInfluences = [];
                        this.morphTargetDictionary = {};
                        for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
                            name = morphAttribute[ m ].name || String( m );
                            this.morphTargetInfluences.push( 0 );
                            this.morphTargetDictionary[ name ] = m;
                        }
                    }
                }
            } else {
                var morphTargets = geometry.morphTargets;
                if ( morphTargets !== undefined && morphTargets.length > 0 ) {
                    console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' );
                }
            }
        },
        clone: function () {
            return new this.constructor( this.geometry, this.material ).copy( this );
        }
    } );
    function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) {
        var rayPointDistanceSq = _ray$2.distanceSqToPoint( point );
        if ( rayPointDistanceSq < localThresholdSq ) {
            var intersectPoint = new Vector3();
            _ray$2.closestPointToPoint( point, intersectPoint );
            intersectPoint.applyMatrix4( matrixWorld );
            var distance = raycaster.ray.origin.distanceTo( intersectPoint );
            if ( distance < raycaster.near || distance > raycaster.far ) { return; }
            intersects.push( {
                distance: distance,
                distanceToRay: Math.sqrt( rayPointDistanceSq ),
                point: intersectPoint,
                index: index,
                face: null,
                object: object
            } );
        }
    }
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
        Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
        this.format = format !== undefined ? format : RGBFormat;
        this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
        this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
        this.generateMipmaps = false;
    }
    VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), {
        constructor: VideoTexture,
        isVideoTexture: true,
        update: function () {
            var video = this.image;
            if ( video.readyState >= video.HAVE_CURRENT_DATA ) {
                this.needsUpdate = true;
            }
        }
    } );
    /**
     * @author alteredq / http://alteredqualia.com/
     */
    function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
        Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
        this.image = { width: width, height: height };
        this.mipmaps = mipmaps;
        // no flipping for cube textures
        // (also flipping doesn't work for compressed textures )
        this.flipY = false;
        // can't generate mipmaps for compressed textures
        // mips must be embedded in DDS files
        this.generateMipmaps = false;
    }
    CompressedTexture.prototype = Object.create( Texture.prototype );
    CompressedTexture.prototype.constructor = CompressedTexture;
    CompressedTexture.prototype.isCompressedTexture = true;
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
        Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
        this.needsUpdate = true;
    }
    CanvasTexture.prototype = Object.create( Texture.prototype );
    CanvasTexture.prototype.constructor = CanvasTexture;
    CanvasTexture.prototype.isCanvasTexture = true;
    /**
     * @author Matt DesLauriers / @mattdesl
     * @author atix / arthursilber.de
     */
    function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {
        format = format !== undefined ? format : DepthFormat;
        if ( format !== DepthFormat && format !== DepthStencilFormat ) {
            throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );
        }
        if ( type === undefined && format === DepthFormat ) { type = UnsignedShortType; }
        if ( type === undefined && format === DepthStencilFormat ) { type = UnsignedInt248Type; }
        Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
        this.image = { width: width, height: height };
        this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
        this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
        this.flipY = false;
        this.generateMipmaps    = false;
    }
    DepthTexture.prototype = Object.create( Texture.prototype );
    DepthTexture.prototype.constructor = DepthTexture;
    DepthTexture.prototype.isDepthTexture = true;
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author Mugen87 / https://github.com/Mugen87
     */
    function WireframeGeometry( geometry ) {
        BufferGeometry.call( this );
        this.type = 'WireframeGeometry';
        // buffer
        var vertices = [];
        // helper variables
        var i, j, l, o, ol;
        var edge = [ 0, 0 ], edges = {}, e, edge1, edge2;
        var key, keys = [ 'a', 'b', 'c' ];
        var vertex;
        // different logic for Geometry and BufferGeometry
        if ( geometry && geometry.isGeometry ) {
            // create a data structure that contains all edges without duplicates
            var faces = geometry.faces;
            for ( i = 0, l = faces.length; i < l; i ++ ) {
                var face = faces[ i ];
                for ( j = 0; j < 3; j ++ ) {
                    edge1 = face[ keys[ j ] ];
                    edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
                    edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
                    edge[ 1 ] = Math.max( edge1, edge2 );
                    key = edge[ 0 ] + ',' + edge[ 1 ];
                    if ( edges[ key ] === undefined ) {
                        edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };
                    }
                }
            }
            // generate vertices
            for ( key in edges ) {
                e = edges[ key ];
                vertex = geometry.vertices[ e.index1 ];
                vertices.push( vertex.x, vertex.y, vertex.z );
                vertex = geometry.vertices[ e.index2 ];
                vertices.push( vertex.x, vertex.y, vertex.z );
            }
        } else if ( geometry && geometry.isBufferGeometry ) {
            var position, indices, groups;
            var group, start, count;
            var index1, index2;
            vertex = new Vector3();
            if ( geometry.index !== null ) {
                // indexed BufferGeometry
                position = geometry.attributes.position;
                indices = geometry.index;
                groups = geometry.groups;
                if ( groups.length === 0 ) {
                    groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];
                }
                // create a data structure that contains all eges without duplicates
                for ( o = 0, ol = groups.length; o < ol; ++ o ) {
                    group = groups[ o ];
                    start = group.start;
                    count = group.count;
                    for ( i = start, l = ( start + count ); i < l; i += 3 ) {
                        for ( j = 0; j < 3; j ++ ) {
                            edge1 = indices.getX( i + j );
                            edge2 = indices.getX( i + ( j + 1 ) % 3 );
                            edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
                            edge[ 1 ] = Math.max( edge1, edge2 );
                            key = edge[ 0 ] + ',' + edge[ 1 ];
                            if ( edges[ key ] === undefined ) {
                                edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };
                            }
                        }
                    }
                }
                // generate vertices
                for ( key in edges ) {
                    e = edges[ key ];
                    vertex.fromBufferAttribute( position, e.index1 );
                    vertices.push( vertex.x, vertex.y, vertex.z );
                    vertex.fromBufferAttribute( position, e.index2 );
                    vertices.push( vertex.x, vertex.y, vertex.z );
                }
            } else {
                // non-indexed BufferGeometry
                position = geometry.attributes.position;
                for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) {
                    for ( j = 0; j < 3; j ++ ) {
                        // three edges per triangle, an edge is represented as (index1, index2)
                        // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
                        index1 = 3 * i + j;
                        vertex.fromBufferAttribute( position, index1 );
                        vertices.push( vertex.x, vertex.y, vertex.z );
                        index2 = 3 * i + ( ( j + 1 ) % 3 );
                        vertex.fromBufferAttribute( position, index2 );
                        vertices.push( vertex.x, vertex.y, vertex.z );
                    }
                }
            }
        }
        // build geometry
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    }
    WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
    WireframeGeometry.prototype.constructor = WireframeGeometry;
    /**
     * @author zz85 / https://github.com/zz85
     * @author Mugen87 / https://github.com/Mugen87
     *
     * Parametric Surfaces Geometry
     * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
     */
    // ParametricGeometry
    function ParametricGeometry( func, slices, stacks ) {
        Geometry.call( this );
        this.type = 'ParametricGeometry';
        this.parameters = {
            func: func,
            slices: slices,
            stacks: stacks
        };
        this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
        this.mergeVertices();
    }
    ParametricGeometry.prototype = Object.create( Geometry.prototype );
    ParametricGeometry.prototype.constructor = ParametricGeometry;
    // ParametricBufferGeometry
    function ParametricBufferGeometry( func, slices, stacks ) {
        BufferGeometry.call( this );
        this.type = 'ParametricBufferGeometry';
        this.parameters = {
            func: func,
            slices: slices,
            stacks: stacks
        };
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        var EPS = 0.00001;
        var normal = new Vector3();
        var p0 = new Vector3(), p1 = new Vector3();
        var pu = new Vector3(), pv = new Vector3();
        var i, j;
        if ( func.length < 3 ) {
            console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' );
        }
        // generate vertices, normals and uvs
        var sliceCount = slices + 1;
        for ( i = 0; i <= stacks; i ++ ) {
            var v = i / stacks;
            for ( j = 0; j <= slices; j ++ ) {
                var u = j / slices;
                // vertex
                func( u, v, p0 );
                vertices.push( p0.x, p0.y, p0.z );
                // normal
                // approximate tangent vectors via finite differences
                if ( u - EPS >= 0 ) {
                    func( u - EPS, v, p1 );
                    pu.subVectors( p0, p1 );
                } else {
                    func( u + EPS, v, p1 );
                    pu.subVectors( p1, p0 );
                }
                if ( v - EPS >= 0 ) {
                    func( u, v - EPS, p1 );
                    pv.subVectors( p0, p1 );
                } else {
                    func( u, v + EPS, p1 );
                    pv.subVectors( p1, p0 );
                }
                // cross product of tangent vectors returns surface normal
                normal.crossVectors( pu, pv ).normalize();
                normals.push( normal.x, normal.y, normal.z );
                // uv
                uvs.push( u, v );
            }
        }
        // generate indices
        for ( i = 0; i < stacks; i ++ ) {
            for ( j = 0; j < slices; j ++ ) {
                var a = i * sliceCount + j;
                var b = i * sliceCount + j + 1;
                var c = ( i + 1 ) * sliceCount + j + 1;
                var d = ( i + 1 ) * sliceCount + j;
                // faces one and two
                indices.push( a, b, d );
                indices.push( b, c, d );
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    }
    ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;
    /**
     * @author clockworkgeek / https://github.com/clockworkgeek
     * @author timothypratley / https://github.com/timothypratley
     * @author WestLangley / http://github.com/WestLangley
     * @author Mugen87 / https://github.com/Mugen87
     */
    // PolyhedronGeometry
    function PolyhedronGeometry( vertices, indices, radius, detail ) {
        Geometry.call( this );
        this.type = 'PolyhedronGeometry';
        this.parameters = {
            vertices: vertices,
            indices: indices,
            radius: radius,
            detail: detail
        };
        this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
        this.mergeVertices();
    }
    PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
    PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;
    // PolyhedronBufferGeometry
    function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {
        BufferGeometry.call( this );
        this.type = 'PolyhedronBufferGeometry';
        this.parameters = {
            vertices: vertices,
            indices: indices,
            radius: radius,
            detail: detail
        };
        radius = radius || 1;
        detail = detail || 0;
        // default buffer data
        var vertexBuffer = [];
        var uvBuffer = [];
        // the subdivision creates the vertex buffer data
        subdivide( detail );
        // all vertices should lie on a conceptual sphere with a given radius
        applyRadius( radius );
        // finally, create the uv data
        generateUVs();
        // build non-indexed geometry
        this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );
        if ( detail === 0 ) {
            this.computeVertexNormals(); // flat normals
        } else {
            this.normalizeNormals(); // smooth normals
        }
        // helper functions
        function subdivide( detail ) {
            var a = new Vector3();
            var b = new Vector3();
            var c = new Vector3();
            // iterate over all faces and apply a subdivison with the given detail value
            for ( var i = 0; i < indices.length; i += 3 ) {
                // get the vertices of the face
                getVertexByIndex( indices[ i + 0 ], a );
                getVertexByIndex( indices[ i + 1 ], b );
                getVertexByIndex( indices[ i + 2 ], c );
                // perform subdivision
                subdivideFace( a, b, c, detail );
            }
        }
        function subdivideFace( a, b, c, detail ) {
            var cols = Math.pow( 2, detail );
            // we use this multidimensional array as a data structure for creating the subdivision
            var v = [];
            var i, j;
            // construct all of the vertices for this subdivision
            for ( i = 0; i <= cols; i ++ ) {
                v[ i ] = [];
                var aj = a.clone().lerp( c, i / cols );
                var bj = b.clone().lerp( c, i / cols );
                var rows = cols - i;
                for ( j = 0; j <= rows; j ++ ) {
                    if ( j === 0 && i === cols ) {
                        v[ i ][ j ] = aj;
                    } else {
                        v[ i ][ j ] = aj.clone().lerp( bj, j / rows );
                    }
                }
            }
            // construct all of the faces
            for ( i = 0; i < cols; i ++ ) {
                for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
                    var k = Math.floor( j / 2 );
                    if ( j % 2 === 0 ) {
                        pushVertex( v[ i ][ k + 1 ] );
                        pushVertex( v[ i + 1 ][ k ] );
                        pushVertex( v[ i ][ k ] );
                    } else {
                        pushVertex( v[ i ][ k + 1 ] );
                        pushVertex( v[ i + 1 ][ k + 1 ] );
                        pushVertex( v[ i + 1 ][ k ] );
                    }
                }
            }
        }
        function applyRadius( radius ) {
            var vertex = new Vector3();
            // iterate over the entire buffer and apply the radius to each vertex
            for ( var i = 0; i < vertexBuffer.length; i += 3 ) {
                vertex.x = vertexBuffer[ i + 0 ];
                vertex.y = vertexBuffer[ i + 1 ];
                vertex.z = vertexBuffer[ i + 2 ];
                vertex.normalize().multiplyScalar( radius );
                vertexBuffer[ i + 0 ] = vertex.x;
                vertexBuffer[ i + 1 ] = vertex.y;
                vertexBuffer[ i + 2 ] = vertex.z;
            }
        }
        function generateUVs() {
            var vertex = new Vector3();
            for ( var i = 0; i < vertexBuffer.length; i += 3 ) {
                vertex.x = vertexBuffer[ i + 0 ];
                vertex.y = vertexBuffer[ i + 1 ];
                vertex.z = vertexBuffer[ i + 2 ];
                var u = azimuth( vertex ) / 2 / Math.PI + 0.5;
                var v = inclination( vertex ) / Math.PI + 0.5;
                uvBuffer.push( u, 1 - v );
            }
            correctUVs();
            correctSeam();
        }
        function correctSeam() {
            // handle case when face straddles the seam, see #3269
            for ( var i = 0; i < uvBuffer.length; i += 6 ) {
                // uv data of a single face
                var x0 = uvBuffer[ i + 0 ];
                var x1 = uvBuffer[ i + 2 ];
                var x2 = uvBuffer[ i + 4 ];
                var max = Math.max( x0, x1, x2 );
                var min = Math.min( x0, x1, x2 );
                // 0.9 is somewhat arbitrary
                if ( max > 0.9 && min < 0.1 ) {
                    if ( x0 < 0.2 ) { uvBuffer[ i + 0 ] += 1; }
                    if ( x1 < 0.2 ) { uvBuffer[ i + 2 ] += 1; }
                    if ( x2 < 0.2 ) { uvBuffer[ i + 4 ] += 1; }
                }
            }
        }
        function pushVertex( vertex ) {
            vertexBuffer.push( vertex.x, vertex.y, vertex.z );
        }
        function getVertexByIndex( index, vertex ) {
            var stride = index * 3;
            vertex.x = vertices[ stride + 0 ];
            vertex.y = vertices[ stride + 1 ];
            vertex.z = vertices[ stride + 2 ];
        }
        function correctUVs() {
            var a = new Vector3();
            var b = new Vector3();
            var c = new Vector3();
            var centroid = new Vector3();
            var uvA = new Vector2();
            var uvB = new Vector2();
            var uvC = new Vector2();
            for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {
                a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
                b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
                c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );
                uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
                uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
                uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );
                centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );
                var azi = azimuth( centroid );
                correctUV( uvA, j + 0, a, azi );
                correctUV( uvB, j + 2, b, azi );
                correctUV( uvC, j + 4, c, azi );
            }
        }
        function correctUV( uv, stride, vector, azimuth ) {
            if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {
                uvBuffer[ stride ] = uv.x - 1;
            }
            if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {
                uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;
            }
        }
        // Angle around the Y axis, counter-clockwise when looking from above.
        function azimuth( vector ) {
            return Math.atan2( vector.z, - vector.x );
        }
        // Angle above the XZ plane.
        function inclination( vector ) {
            return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
        }
    }
    PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;
    /**
     * @author timothypratley / https://github.com/timothypratley
     * @author Mugen87 / https://github.com/Mugen87
     */
    // TetrahedronGeometry
    function TetrahedronGeometry( radius, detail ) {
        Geometry.call( this );
        this.type = 'TetrahedronGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
        this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
        this.mergeVertices();
    }
    TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
    TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;
    // TetrahedronBufferGeometry
    function TetrahedronBufferGeometry( radius, detail ) {
        var vertices = [
            1, 1, 1,     - 1, - 1, 1,     - 1, 1, - 1,     1, - 1, - 1
        ];
        var indices = [
            2, 1, 0,     0, 3, 2,    1, 3, 0,    2, 3, 1
        ];
        PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
        this.type = 'TetrahedronBufferGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
    }
    TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;
    /**
     * @author timothypratley / https://github.com/timothypratley
     * @author Mugen87 / https://github.com/Mugen87
     */
    // OctahedronGeometry
    function OctahedronGeometry( radius, detail ) {
        Geometry.call( this );
        this.type = 'OctahedronGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
        this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
        this.mergeVertices();
    }
    OctahedronGeometry.prototype = Object.create( Geometry.prototype );
    OctahedronGeometry.prototype.constructor = OctahedronGeometry;
    // OctahedronBufferGeometry
    function OctahedronBufferGeometry( radius, detail ) {
        var vertices = [
            1, 0, 0,     - 1, 0, 0,    0, 1, 0,
            0, - 1, 0,     0, 0, 1,    0, 0, - 1
        ];
        var indices = [
            0, 2, 4,    0, 4, 3,    0, 3, 5,
            0, 5, 2,    1, 2, 5,    1, 5, 3,
            1, 3, 4,    1, 4, 2
        ];
        PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
        this.type = 'OctahedronBufferGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
    }
    OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;
    /**
     * @author timothypratley / https://github.com/timothypratley
     * @author Mugen87 / https://github.com/Mugen87
     */
    // IcosahedronGeometry
    function IcosahedronGeometry( radius, detail ) {
        Geometry.call( this );
        this.type = 'IcosahedronGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
        this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
        this.mergeVertices();
    }
    IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
    IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;
    // IcosahedronBufferGeometry
    function IcosahedronBufferGeometry( radius, detail ) {
        var t = ( 1 + Math.sqrt( 5 ) ) / 2;
        var vertices = [
            - 1, t, 0,     1, t, 0,     - 1, - t, 0,     1, - t, 0,
             0, - 1, t,     0, 1, t,    0, - 1, - t,     0, 1, - t,
             t, 0, - 1,     t, 0, 1,     - t, 0, - 1,     - t, 0, 1
        ];
        var indices = [
             0, 11, 5,     0, 5, 1,     0, 1, 7,     0, 7, 10,     0, 10, 11,
             1, 5, 9,     5, 11, 4,    11, 10, 2,    10, 7, 6,    7, 1, 8,
             3, 9, 4,     3, 4, 2,    3, 2, 6,    3, 6, 8,    3, 8, 9,
             4, 9, 5,     2, 4, 11,    6, 2, 10,    8, 6, 7,    9, 8, 1
        ];
        PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
        this.type = 'IcosahedronBufferGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
    }
    IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;
    /**
     * @author Abe Pazos / https://hamoid.com
     * @author Mugen87 / https://github.com/Mugen87
     */
    // DodecahedronGeometry
    function DodecahedronGeometry( radius, detail ) {
        Geometry.call( this );
        this.type = 'DodecahedronGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
        this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
        this.mergeVertices();
    }
    DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
    DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;
    // DodecahedronBufferGeometry
    function DodecahedronBufferGeometry( radius, detail ) {
        var t = ( 1 + Math.sqrt( 5 ) ) / 2;
        var r = 1 / t;
        var vertices = [
            // (±1, ±1, ±1)
            - 1, - 1, - 1,    - 1, - 1, 1,
            - 1, 1, - 1, - 1, 1, 1,
            1, - 1, - 1, 1, - 1, 1,
            1, 1, - 1, 1, 1, 1,
            // (0, ±1/φ, ±φ)
             0, - r, - t, 0, - r, t,
             0, r, - t, 0, r, t,
            // (±1/φ, ±φ, 0)
            - r, - t, 0, - r, t, 0,
             r, - t, 0, r, t, 0,
            // (±φ, 0, ±1/φ)
            - t, 0, - r, t, 0, - r,
            - t, 0, r, t, 0, r
        ];
        var indices = [
            3, 11, 7,     3, 7, 15,     3, 15, 13,
            7, 19, 17,     7, 17, 6,     7, 6, 15,
            17, 4, 8,     17, 8, 10,     17, 10, 6,
            8, 0, 16,     8, 16, 2,     8, 2, 10,
            0, 12, 1,     0, 1, 18,     0, 18, 16,
            6, 10, 2,     6, 2, 13,     6, 13, 15,
            2, 16, 18,     2, 18, 3,     2, 3, 13,
            18, 1, 9,     18, 9, 11,     18, 11, 3,
            4, 14, 12,     4, 12, 0,     4, 0, 8,
            11, 9, 5,     11, 5, 19,     11, 19, 7,
            19, 5, 14,     19, 14, 4,     19, 4, 17,
            1, 12, 14,     1, 14, 5,     1, 5, 9
        ];
        PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
        this.type = 'DodecahedronBufferGeometry';
        this.parameters = {
            radius: radius,
            detail: detail
        };
    }
    DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;
    /**
     * @author oosmoxiecode / https://github.com/oosmoxiecode
     * @author WestLangley / https://github.com/WestLangley
     * @author zz85 / https://github.com/zz85
     * @author miningold / https://github.com/miningold
     * @author jonobr1 / https://github.com/jonobr1
     * @author Mugen87 / https://github.com/Mugen87
     *
     */
    // TubeGeometry
    function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {
        Geometry.call( this );
        this.type = 'TubeGeometry';
        this.parameters = {
            path: path,
            tubularSegments: tubularSegments,
            radius: radius,
            radialSegments: radialSegments,
            closed: closed
        };
        if ( taper !== undefined ) { console.warn( 'THREE.TubeGeometry: taper has been removed.' ); }
        var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );
        // expose internals
        this.tangents = bufferGeometry.tangents;
        this.normals = bufferGeometry.normals;
        this.binormals = bufferGeometry.binormals;
        // create geometry
        this.fromBufferGeometry( bufferGeometry );
        this.mergeVertices();
    }
    TubeGeometry.prototype = Object.create( Geometry.prototype );
    TubeGeometry.prototype.constructor = TubeGeometry;
    // TubeBufferGeometry
    function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {
        BufferGeometry.call( this );
        this.type = 'TubeBufferGeometry';
        this.parameters = {
            path: path,
            tubularSegments: tubularSegments,
            radius: radius,
            radialSegments: radialSegments,
            closed: closed
        };
        tubularSegments = tubularSegments || 64;
        radius = radius || 1;
        radialSegments = radialSegments || 8;
        closed = closed || false;
        var frames = path.computeFrenetFrames( tubularSegments, closed );
        // expose internals
        this.tangents = frames.tangents;
        this.normals = frames.normals;
        this.binormals = frames.binormals;
        // helper variables
        var vertex = new Vector3();
        var normal = new Vector3();
        var uv = new Vector2();
        var P = new Vector3();
        var i, j;
        // buffer
        var vertices = [];
        var normals = [];
        var uvs = [];
        var indices = [];
        // create buffer data
        generateBufferData();
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
        // functions
        function generateBufferData() {
            for ( i = 0; i < tubularSegments; i ++ ) {
                generateSegment( i );
            }
            // if the geometry is not closed, generate the last row of vertices and normals
            // at the regular position on the given path
            //
            // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
            generateSegment( ( closed === false ) ? tubularSegments : 0 );
            // uvs are generated in a separate function.
            // this makes it easy compute correct values for closed geometries
            generateUVs();
            // finally create faces
            generateIndices();
        }
        function generateSegment( i ) {
            // we use getPointAt to sample evenly distributed points from the given path
            P = path.getPointAt( i / tubularSegments, P );
            // retrieve corresponding normal and binormal
            var N = frames.normals[ i ];
            var B = frames.binormals[ i ];
            // generate normals and vertices for the current segment
            for ( j = 0; j <= radialSegments; j ++ ) {
                var v = j / radialSegments * Math.PI * 2;
                var sin = Math.sin( v );
                var cos = - Math.cos( v );
                // normal
                normal.x = ( cos * N.x + sin * B.x );
                normal.y = ( cos * N.y + sin * B.y );
                normal.z = ( cos * N.z + sin * B.z );
                normal.normalize();
                normals.push( normal.x, normal.y, normal.z );
                // vertex
                vertex.x = P.x + radius * normal.x;
                vertex.y = P.y + radius * normal.y;
                vertex.z = P.z + radius * normal.z;
                vertices.push( vertex.x, vertex.y, vertex.z );
            }
        }
        function generateIndices() {
            for ( j = 1; j <= tubularSegments; j ++ ) {
                for ( i = 1; i <= radialSegments; i ++ ) {
                    var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
                    var b = ( radialSegments + 1 ) * j + ( i - 1 );
                    var c = ( radialSegments + 1 ) * j + i;
                    var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
                    // faces
                    indices.push( a, b, d );
                    indices.push( b, c, d );
                }
            }
        }
        function generateUVs() {
            for ( i = 0; i <= tubularSegments; i ++ ) {
                for ( j = 0; j <= radialSegments; j ++ ) {
                    uv.x = i / tubularSegments;
                    uv.y = j / radialSegments;
                    uvs.push( uv.x, uv.y );
                }
            }
        }
    }
    TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;
    TubeBufferGeometry.prototype.toJSON = function () {
        var data = BufferGeometry.prototype.toJSON.call( this );
        data.path = this.parameters.path.toJSON();
        return data;
    };
    /**
     * @author oosmoxiecode
     * @author Mugen87 / https://github.com/Mugen87
     *
     * based on http://www.blackpawn.com/texts/pqtorus/
     */
    // TorusKnotGeometry
    function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {
        Geometry.call( this );
        this.type = 'TorusKnotGeometry';
        this.parameters = {
            radius: radius,
            tube: tube,
            tubularSegments: tubularSegments,
            radialSegments: radialSegments,
            p: p,
            q: q
        };
        if ( heightScale !== undefined ) { console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); }
        this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
        this.mergeVertices();
    }
    TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
    TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;
    // TorusKnotBufferGeometry
    function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {
        BufferGeometry.call( this );
        this.type = 'TorusKnotBufferGeometry';
        this.parameters = {
            radius: radius,
            tube: tube,
            tubularSegments: tubularSegments,
            radialSegments: radialSegments,
            p: p,
            q: q
        };
        radius = radius || 1;
        tube = tube || 0.4;
        tubularSegments = Math.floor( tubularSegments ) || 64;
        radialSegments = Math.floor( radialSegments ) || 8;
        p = p || 2;
        q = q || 3;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // helper variables
        var i, j;
        var vertex = new Vector3();
        var normal = new Vector3();
        var P1 = new Vector3();
        var P2 = new Vector3();
        var B = new Vector3();
        var T = new Vector3();
        var N = new Vector3();
        // generate vertices, normals and uvs
        for ( i = 0; i <= tubularSegments; ++ i ) {
            // the radian "u" is used to calculate the position on the torus curve of the current tubular segement
            var u = i / tubularSegments * p * Math.PI * 2;
            // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
            // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
            calculatePositionOnCurve( u, p, q, radius, P1 );
            calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
            // calculate orthonormal basis
            T.subVectors( P2, P1 );
            N.addVectors( P2, P1 );
            B.crossVectors( T, N );
            N.crossVectors( B, T );
            // normalize B, N. T can be ignored, we don't use it
            B.normalize();
            N.normalize();
            for ( j = 0; j <= radialSegments; ++ j ) {
                // now calculate the vertices. they are nothing more than an extrusion of the torus curve.
                // because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
                var v = j / radialSegments * Math.PI * 2;
                var cx = - tube * Math.cos( v );
                var cy = tube * Math.sin( v );
                // now calculate the final vertex position.
                // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
                vertex.x = P1.x + ( cx * N.x + cy * B.x );
                vertex.y = P1.y + ( cx * N.y + cy * B.y );
                vertex.z = P1.z + ( cx * N.z + cy * B.z );
                vertices.push( vertex.x, vertex.y, vertex.z );
                // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
                normal.subVectors( vertex, P1 ).normalize();
                normals.push( normal.x, normal.y, normal.z );
                // uv
                uvs.push( i / tubularSegments );
                uvs.push( j / radialSegments );
            }
        }
        // generate indices
        for ( j = 1; j <= tubularSegments; j ++ ) {
            for ( i = 1; i <= radialSegments; i ++ ) {
                // indices
                var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
                var b = ( radialSegments + 1 ) * j + ( i - 1 );
                var c = ( radialSegments + 1 ) * j + i;
                var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
                // faces
                indices.push( a, b, d );
                indices.push( b, c, d );
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
        // this function calculates the current position on the torus curve
        function calculatePositionOnCurve( u, p, q, radius, position ) {
            var cu = Math.cos( u );
            var su = Math.sin( u );
            var quOverP = q / p * u;
            var cs = Math.cos( quOverP );
            position.x = radius * ( 2 + cs ) * 0.5 * cu;
            position.y = radius * ( 2 + cs ) * su * 0.5;
            position.z = radius * Math.sin( quOverP ) * 0.5;
        }
    }
    TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;
    /**
     * @author oosmoxiecode
     * @author mrdoob / http://mrdoob.com/
     * @author Mugen87 / https://github.com/Mugen87
     */
    // TorusGeometry
    function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {
        Geometry.call( this );
        this.type = 'TorusGeometry';
        this.parameters = {
            radius: radius,
            tube: tube,
            radialSegments: radialSegments,
            tubularSegments: tubularSegments,
            arc: arc
        };
        this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
        this.mergeVertices();
    }
    TorusGeometry.prototype = Object.create( Geometry.prototype );
    TorusGeometry.prototype.constructor = TorusGeometry;
    // TorusBufferGeometry
    function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {
        BufferGeometry.call( this );
        this.type = 'TorusBufferGeometry';
        this.parameters = {
            radius: radius,
            tube: tube,
            radialSegments: radialSegments,
            tubularSegments: tubularSegments,
            arc: arc
        };
        radius = radius || 1;
        tube = tube || 0.4;
        radialSegments = Math.floor( radialSegments ) || 8;
        tubularSegments = Math.floor( tubularSegments ) || 6;
        arc = arc || Math.PI * 2;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // helper variables
        var center = new Vector3();
        var vertex = new Vector3();
        var normal = new Vector3();
        var j, i;
        // generate vertices, normals and uvs
        for ( j = 0; j <= radialSegments; j ++ ) {
            for ( i = 0; i <= tubularSegments; i ++ ) {
                var u = i / tubularSegments * arc;
                var v = j / radialSegments * Math.PI * 2;
                // vertex
                vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
                vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
                vertex.z = tube * Math.sin( v );
                vertices.push( vertex.x, vertex.y, vertex.z );
                // normal
                center.x = radius * Math.cos( u );
                center.y = radius * Math.sin( u );
                normal.subVectors( vertex, center ).normalize();
                normals.push( normal.x, normal.y, normal.z );
                // uv
                uvs.push( i / tubularSegments );
                uvs.push( j / radialSegments );
            }
        }
        // generate indices
        for ( j = 1; j <= radialSegments; j ++ ) {
            for ( i = 1; i <= tubularSegments; i ++ ) {
                // indices
                var a = ( tubularSegments + 1 ) * j + i - 1;
                var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
                var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
                var d = ( tubularSegments + 1 ) * j + i;
                // faces
                indices.push( a, b, d );
                indices.push( b, c, d );
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    }
    TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;
    /**
     * @author Mugen87 / https://github.com/Mugen87
     * Port from https://github.com/mapbox/earcut (v2.2.2)
     */
    var Earcut = {
        triangulate: function ( data, holeIndices, dim ) {
            dim = dim || 2;
            var hasHoles = holeIndices && holeIndices.length,
                outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length,
                outerNode = linkedList( data, 0, outerLen, dim, true ),
                triangles = [];
            if ( ! outerNode || outerNode.next === outerNode.prev ) { return triangles; }
            var minX, minY, maxX, maxY, x, y, invSize;
            if ( hasHoles ) { outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); }
            // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
            if ( data.length > 80 * dim ) {
                minX = maxX = data[ 0 ];
                minY = maxY = data[ 1 ];
                for ( var i = dim; i < outerLen; i += dim ) {
                    x = data[ i ];
                    y = data[ i + 1 ];
                    if ( x < minX ) { minX = x; }
                    if ( y < minY ) { minY = y; }
                    if ( x > maxX ) { maxX = x; }
                    if ( y > maxY ) { maxY = y; }
                }
                // minX, minY and invSize are later used to transform coords into integers for z-order calculation
                invSize = Math.max( maxX - minX, maxY - minY );
                invSize = invSize !== 0 ? 1 / invSize : 0;
            }
            earcutLinked( outerNode, triangles, dim, minX, minY, invSize );
            return triangles;
        }
    };
    // create a circular doubly linked list from polygon points in the specified winding order
    function linkedList( data, start, end, dim, clockwise ) {
        var i, last;
        if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {
            for ( i = start; i < end; i += dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); }
        } else {
            for ( i = end - dim; i >= start; i -= dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); }
        }
        if ( last && equals( last, last.next ) ) {
            removeNode( last );
            last = last.next;
        }
        return last;
    }
    // eliminate colinear or duplicate points
    function filterPoints( start, end ) {
        if ( ! start ) { return start; }
        if ( ! end ) { end = start; }
        var p = start,
            again;
        do {
            again = false;
            if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {
                removeNode( p );
                p = end = p.prev;
                if ( p === p.next ) { break; }
                again = true;
            } else {
                p = p.next;
            }
        } while ( again || p !== end );
        return end;
    }
    // main ear slicing loop which triangulates a polygon (given as a linked list)
    function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {
        if ( ! ear ) { return; }
        // interlink polygon nodes in z-order
        if ( ! pass && invSize ) { indexCurve( ear, minX, minY, invSize ); }
        var stop = ear,
            prev, next;
        // iterate through ears, slicing them one by one
        while ( ear.prev !== ear.next ) {
            prev = ear.prev;
            next = ear.next;
            if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {
                // cut off the triangle
                triangles.push( prev.i / dim );
                triangles.push( ear.i / dim );
                triangles.push( next.i / dim );
                removeNode( ear );
                // skipping the next vertex leads to less sliver triangles
                ear = next.next;
                stop = next.next;
                continue;
            }
            ear = next;
            // if we looped through the whole remaining polygon and can't find any more ears
            if ( ear === stop ) {
                // try filtering points and slicing again
                if ( ! pass ) {
                    earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );
                    // if this didn't work, try curing all small self-intersections locally
                } else if ( pass === 1 ) {
                    ear = cureLocalIntersections( filterPoints( ear ), triangles, dim );
                    earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );
                    // as a last resort, try splitting the remaining polygon into two
                } else if ( pass === 2 ) {
                    splitEarcut( ear, triangles, dim, minX, minY, invSize );
                }
                break;
            }
        }
    }
    // check whether a polygon node forms a valid ear with adjacent nodes
    function isEar( ear ) {
        var a = ear.prev,
            b = ear,
            c = ear.next;
        if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear
        // now make sure we don't have other points inside the potential ear
        var p = ear.next.next;
        while ( p !== ear.prev ) {
            if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
                area( p.prev, p, p.next ) >= 0 ) { return false; }
            p = p.next;
        }
        return true;
    }
    function isEarHashed( ear, minX, minY, invSize ) {
        var a = ear.prev,
            b = ear,
            c = ear.next;
        if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear
        // triangle bbox; min & max are calculated like this for speed
        var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ),
            minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ),
            maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ),
            maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );
        // z-order range for the current triangle bbox;
        var minZ = zOrder( minTX, minTY, minX, minY, invSize ),
            maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );
        var p = ear.prevZ,
            n = ear.nextZ;
        // look for points inside the triangle in both directions
        while ( p && p.z >= minZ && n && n.z <= maxZ ) {
            if ( p !== ear.prev && p !== ear.next &&
                pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
                area( p.prev, p, p.next ) >= 0 ) { return false; }
            p = p.prevZ;
            if ( n !== ear.prev && n !== ear.next &&
                pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
                area( n.prev, n, n.next ) >= 0 ) { return false; }
            n = n.nextZ;
        }
        // look for remaining points in decreasing z-order
        while ( p && p.z >= minZ ) {
            if ( p !== ear.prev && p !== ear.next &&
                pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
                area( p.prev, p, p.next ) >= 0 ) { return false; }
            p = p.prevZ;
        }
        // look for remaining points in increasing z-order
        while ( n && n.z <= maxZ ) {
            if ( n !== ear.prev && n !== ear.next &&
                pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
                area( n.prev, n, n.next ) >= 0 ) { return false; }
            n = n.nextZ;
        }
        return true;
    }
    // go through all polygon nodes and cure small local self-intersections
    function cureLocalIntersections( start, triangles, dim ) {
        var p = start;
        do {
            var a = p.prev,
                b = p.next.next;
            if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {
                triangles.push( a.i / dim );
                triangles.push( p.i / dim );
                triangles.push( b.i / dim );
                // remove two nodes involved
                removeNode( p );
                removeNode( p.next );
                p = start = b;
            }
            p = p.next;
        } while ( p !== start );
        return filterPoints( p );
    }
    // try splitting polygon into two and triangulate them independently
    function splitEarcut( start, triangles, dim, minX, minY, invSize ) {
        // look for a valid diagonal that divides the polygon into two
        var a = start;
        do {
            var b = a.next.next;
            while ( b !== a.prev ) {
                if ( a.i !== b.i && isValidDiagonal( a, b ) ) {
                    // split the polygon in two by the diagonal
                    var c = splitPolygon( a, b );
                    // filter colinear points around the cuts
                    a = filterPoints( a, a.next );
                    c = filterPoints( c, c.next );
                    // run earcut on each half
                    earcutLinked( a, triangles, dim, minX, minY, invSize );
                    earcutLinked( c, triangles, dim, minX, minY, invSize );
                    return;
                }
                b = b.next;
            }
            a = a.next;
        } while ( a !== start );
    }
    // link every hole into the outer loop, producing a single-ring polygon without holes
    function eliminateHoles( data, holeIndices, outerNode, dim ) {
        var queue = [],
            i, len, start, end, list;
        for ( i = 0, len = holeIndices.length; i < len; i ++ ) {
            start = holeIndices[ i ] * dim;
            end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
            list = linkedList( data, start, end, dim, false );
            if ( list === list.next ) { list.steiner = true; }
            queue.push( getLeftmost( list ) );
        }
        queue.sort( compareX );
        // process holes from left to right
        for ( i = 0; i < queue.length; i ++ ) {
            eliminateHole( queue[ i ], outerNode );
            outerNode = filterPoints( outerNode, outerNode.next );
        }
        return outerNode;
    }
    function compareX( a, b ) {
        return a.x - b.x;
    }
    // find a bridge between vertices that connects hole with an outer ring and and link it
    function eliminateHole( hole, outerNode ) {
        outerNode = findHoleBridge( hole, outerNode );
        if ( outerNode ) {
            var b = splitPolygon( outerNode, hole );
            // filter collinear points around the cuts
            filterPoints( outerNode, outerNode.next );
            filterPoints( b, b.next );
        }
    }
    // David Eberly's algorithm for finding a bridge between hole and outer polygon
    function findHoleBridge( hole, outerNode ) {
        var p = outerNode,
            hx = hole.x,
            hy = hole.y,
            qx = - Infinity,
            m;
        // find a segment intersected by a ray from the hole's leftmost point to the left;
        // segment's endpoint with lesser x will be potential connection point
        do {
            if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {
                var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );
                if ( x <= hx && x > qx ) {
                    qx = x;
                    if ( x === hx ) {
                        if ( hy === p.y ) { return p; }
                        if ( hy === p.next.y ) { return p.next; }
                    }
                    m = p.x < p.next.x ? p : p.next;
                }
            }
            p = p.next;
        } while ( p !== outerNode );
        if ( ! m ) { return null; }
        if ( hx === qx ) { return m; } // hole touches outer segment; pick leftmost endpoint
        // look for points inside the triangle of hole point, segment intersection and endpoint;
        // if there are no points found, we have a valid connection;
        // otherwise choose the point of the minimum angle with the ray as connection point
        var stop = m,
            mx = m.x,
            my = m.y,
            tanMin = Infinity,
            tan;
        p = m;
        do {
            if ( hx >= p.x && p.x >= mx && hx !== p.x &&
                    pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {
                tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential
                if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) {
                    m = p;
                    tanMin = tan;
                }
            }
            p = p.next;
        } while ( p !== stop );
        return m;
    }
    // whether sector in vertex m contains sector in vertex p in the same coordinates
    function sectorContainsSector( m, p ) {
        return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0;
    }
    // interlink polygon nodes in z-order
    function indexCurve( start, minX, minY, invSize ) {
        var p = start;
        do {
            if ( p.z === null ) { p.z = zOrder( p.x, p.y, minX, minY, invSize ); }
            p.prevZ = p.prev;
            p.nextZ = p.next;
            p = p.next;
        } while ( p !== start );
        p.prevZ.nextZ = null;
        p.prevZ = null;
        sortLinked( p );
    }
    // Simon Tatham's linked list merge sort algorithm
    // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
    function sortLinked( list ) {
        var i, p, q, e, tail, numMerges, pSize, qSize,
            inSize = 1;
        do {
            p = list;
            list = null;
            tail = null;
            numMerges = 0;
            while ( p ) {
                numMerges ++;
                q = p;
                pSize = 0;
                for ( i = 0; i < inSize; i ++ ) {
                    pSize ++;
                    q = q.nextZ;
                    if ( ! q ) { break; }
                }
                qSize = inSize;
                while ( pSize > 0 || ( qSize > 0 && q ) ) {
                    if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {
                        e = p;
                        p = p.nextZ;
                        pSize --;
                    } else {
                        e = q;
                        q = q.nextZ;
                        qSize --;
                    }
                    if ( tail ) { tail.nextZ = e; }
                    else { list = e; }
                    e.prevZ = tail;
                    tail = e;
                }
                p = q;
            }
            tail.nextZ = null;
            inSize *= 2;
        } while ( numMerges > 1 );
        return list;
    }
    // z-order of a point given coords and inverse of the longer side of data bbox
    function zOrder( x, y, minX, minY, invSize ) {
        // coords are transformed into non-negative 15-bit integer range
        x = 32767 * ( x - minX ) * invSize;
        y = 32767 * ( y - minY ) * invSize;
        x = ( x | ( x << 8 ) ) & 0x00FF00FF;
        x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
        x = ( x | ( x << 2 ) ) & 0x33333333;
        x = ( x | ( x << 1 ) ) & 0x55555555;
        y = ( y | ( y << 8 ) ) & 0x00FF00FF;
        y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
        y = ( y | ( y << 2 ) ) & 0x33333333;
        y = ( y | ( y << 1 ) ) & 0x55555555;
        return x | ( y << 1 );
    }
    // find the leftmost node of a polygon ring
    function getLeftmost( start ) {
        var p = start,
            leftmost = start;
        do {
            if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) { leftmost = p; }
            p = p.next;
        } while ( p !== start );
        return leftmost;
    }
    // check if a point lies within a convex triangle
    function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {
        return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 &&
                ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 &&
                ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;
    }
    // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
    function isValidDiagonal( a, b ) {
        return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges
            ( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible
            ( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors
            equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case
    }
    // signed area of a triangle
    function area( p, q, r ) {
        return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );
    }
    // check if two points are equal
    function equals( p1, p2 ) {
        return p1.x === p2.x && p1.y === p2.y;
    }
    // check if two segments intersect
    function intersects( p1, q1, p2, q2 ) {
        var o1 = sign( area( p1, q1, p2 ) );
        var o2 = sign( area( p1, q1, q2 ) );
        var o3 = sign( area( p2, q2, p1 ) );
        var o4 = sign( area( p2, q2, q1 ) );
        if ( o1 !== o2 && o3 !== o4 ) { return true; } // general case
        if ( o1 === 0 && onSegment( p1, p2, q1 ) ) { return true; } // p1, q1 and p2 are collinear and p2 lies on p1q1
        if ( o2 === 0 && onSegment( p1, q2, q1 ) ) { return true; } // p1, q1 and q2 are collinear and q2 lies on p1q1
        if ( o3 === 0 && onSegment( p2, p1, q2 ) ) { return true; } // p2, q2 and p1 are collinear and p1 lies on p2q2
        if ( o4 === 0 && onSegment( p2, q1, q2 ) ) { return true; } // p2, q2 and q1 are collinear and q1 lies on p2q2
        return false;
    }
    // for collinear points p, q, r, check if point q lies on segment pr
    function onSegment( p, q, r ) {
        return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y );
    }
    function sign( num ) {
        return num > 0 ? 1 : num < 0 ? - 1 : 0;
    }
    // check if a polygon diagonal intersects any polygon segments
    function intersectsPolygon( a, b ) {
        var p = a;
        do {
            if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
                    intersects( p, p.next, a, b ) ) { return true; }
            p = p.next;
        } while ( p !== a );
        return false;
    }
    // check if a polygon diagonal is locally inside the polygon
    function locallyInside( a, b ) {
        return area( a.prev, a, a.next ) < 0 ?
            area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 :
            area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;
    }
    // check if the middle point of a polygon diagonal is inside the polygon
    function middleInside( a, b ) {
        var p = a,
            inside = false,
            px = ( a.x + b.x ) / 2,
            py = ( a.y + b.y ) / 2;
        do {
            if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
                    ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) )
                { inside = ! inside; }
            p = p.next;
        } while ( p !== a );
        return inside;
    }
    // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
    // if one belongs to the outer ring and another to a hole, it merges it into a single ring
    function splitPolygon( a, b ) {
        var a2 = new Node( a.i, a.x, a.y ),
            b2 = new Node( b.i, b.x, b.y ),
            an = a.next,
            bp = b.prev;
        a.next = b;
        b.prev = a;
        a2.next = an;
        an.prev = a2;
        b2.next = a2;
        a2.prev = b2;
        bp.next = b2;
        b2.prev = bp;
        return b2;
    }
    // create a node and optionally link it with previous one (in a circular doubly linked list)
    function insertNode( i, x, y, last ) {
        var p = new Node( i, x, y );
        if ( ! last ) {
            p.prev = p;
            p.next = p;
        } else {
            p.next = last.next;
            p.prev = last;
            last.next.prev = p;
            last.next = p;
        }
        return p;
    }
    function removeNode( p ) {
        p.next.prev = p.prev;
        p.prev.next = p.next;
        if ( p.prevZ ) { p.prevZ.nextZ = p.nextZ; }
        if ( p.nextZ ) { p.nextZ.prevZ = p.prevZ; }
    }
    function Node( i, x, y ) {
        // vertex index in coordinates array
        this.i = i;
        // vertex coordinates
        this.x = x;
        this.y = y;
        // previous and next vertex nodes in a polygon ring
        this.prev = null;
        this.next = null;
        // z-order curve value
        this.z = null;
        // previous and next nodes in z-order
        this.prevZ = null;
        this.nextZ = null;
        // indicates whether this is a steiner point
        this.steiner = false;
    }
    function signedArea( data, start, end, dim ) {
        var sum = 0;
        for ( var i = start, j = end - dim; i < end; i += dim ) {
            sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
            j = i;
        }
        return sum;
    }
    /**
     * @author zz85 / http://www.lab4games.net/zz85/blog
     */
    var ShapeUtils = {
        // calculate area of the contour polygon
        area: function ( contour ) {
            var n = contour.length;
            var a = 0.0;
            for ( var p = n - 1, q = 0; q < n; p = q ++ ) {
                a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
            }
            return a * 0.5;
        },
        isClockWise: function ( pts ) {
            return ShapeUtils.area( pts ) < 0;
        },
        triangulateShape: function ( contour, holes ) {
            var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
            var holeIndices = []; // array of hole indices
            var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
            removeDupEndPts( contour );
            addContour( vertices, contour );
            //
            var holeIndex = contour.length;
            holes.forEach( removeDupEndPts );
            for ( var i = 0; i < holes.length; i ++ ) {
                holeIndices.push( holeIndex );
                holeIndex += holes[ i ].length;
                addContour( vertices, holes[ i ] );
            }
            //
            var triangles = Earcut.triangulate( vertices, holeIndices );
            //
            for ( var i = 0; i < triangles.length; i += 3 ) {
                faces.push( triangles.slice( i, i + 3 ) );
            }
            return faces;
        }
    };
    function removeDupEndPts( points ) {
        var l = points.length;
        if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {
            points.pop();
        }
    }
    function addContour( vertices, contour ) {
        for ( var i = 0; i < contour.length; i ++ ) {
            vertices.push( contour[ i ].x );
            vertices.push( contour[ i ].y );
        }
    }
    /**
     * @author zz85 / http://www.lab4games.net/zz85/blog
     *
     * Creates extruded geometry from a path shape.
     *
     * parameters = {
     *
     * curveSegments: , // number of points on the curves
     * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too
     * depth: , // Depth to extrude the shape
     *
     * bevelEnabled: , // turn on bevel
     * bevelThickness: , // how deep into the original shape bevel goes
     * bevelSize: , // how far from shape outline (including bevelOffset) is bevel
     * bevelOffset: , // how far from shape outline does bevel start
     * bevelSegments: , // number of bevel layers
     *
     * extrudePath: // curve to extrude shape along
     *
     * UVGenerator: // object that provides UV generator functions
     *
     * }
     */
    // ExtrudeGeometry
    function ExtrudeGeometry( shapes, options ) {
        Geometry.call( this );
        this.type = 'ExtrudeGeometry';
        this.parameters = {
            shapes: shapes,
            options: options
        };
        this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
        this.mergeVertices();
    }
    ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
    ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;
    ExtrudeGeometry.prototype.toJSON = function () {
        var data = Geometry.prototype.toJSON.call( this );
        var shapes = this.parameters.shapes;
        var options = this.parameters.options;
        return toJSON( shapes, options, data );
    };
    // ExtrudeBufferGeometry
    function ExtrudeBufferGeometry( shapes, options ) {
        BufferGeometry.call( this );
        this.type = 'ExtrudeBufferGeometry';
        this.parameters = {
            shapes: shapes,
            options: options
        };
        shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
        var scope = this;
        var verticesArray = [];
        var uvArray = [];
        for ( var i = 0, l = shapes.length; i < l; i ++ ) {
            var shape = shapes[ i ];
            addShape( shape );
        }
        // build geometry
        this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );
        this.computeVertexNormals();
        // functions
        function addShape( shape ) {
            var placeholder = [];
            // options
            var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
            var steps = options.steps !== undefined ? options.steps : 1;
            var depth = options.depth !== undefined ? options.depth : 100;
            var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
            var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
            var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
            var bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
            var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
            var extrudePath = options.extrudePath;
            var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;
            // deprecated options
            if ( options.amount !== undefined ) {
                console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' );
                depth = options.amount;
            }
            //
            var extrudePts, extrudeByPath = false;
            var splineTube, binormal, normal, position2;
            if ( extrudePath ) {
                extrudePts = extrudePath.getSpacedPoints( steps );
                extrudeByPath = true;
                bevelEnabled = false; // bevels not supported for path extrusion
                // SETUP TNB variables
                // TODO1 - have a .isClosed in spline?
                splineTube = extrudePath.computeFrenetFrames( steps, false );
                // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
                binormal = new Vector3();
                normal = new Vector3();
                position2 = new Vector3();
            }
            // Safeguards if bevels are not enabled
            if ( ! bevelEnabled ) {
                bevelSegments = 0;
                bevelThickness = 0;
                bevelSize = 0;
                bevelOffset = 0;
            }
            // Variables initialization
            var ahole, h, hl; // looping of holes
            var shapePoints = shape.extractPoints( curveSegments );
            var vertices = shapePoints.shape;
            var holes = shapePoints.holes;
            var reverse = ! ShapeUtils.isClockWise( vertices );
            if ( reverse ) {
                vertices = vertices.reverse();
                // Maybe we should also check if holes are in the opposite direction, just to be safe ...
                for ( h = 0, hl = holes.length; h < hl; h ++ ) {
                    ahole = holes[ h ];
                    if ( ShapeUtils.isClockWise( ahole ) ) {
                        holes[ h ] = ahole.reverse();
                    }
                }
            }
            var faces = ShapeUtils.triangulateShape( vertices, holes );
            /* Vertices */
            var contour = vertices; // vertices has all points but contour has only points of circumference
            for ( h = 0, hl = holes.length; h < hl; h ++ ) {
                ahole = holes[ h ];
                vertices = vertices.concat( ahole );
            }
            function scalePt2( pt, vec, size ) {
                if ( ! vec ) { console.error( "THREE.ExtrudeGeometry: vec does not exist" ); }
                return vec.clone().multiplyScalar( size ).add( pt );
            }
            var b, bs, t, z,
                vert, vlen = vertices.length,
                face, flen = faces.length;
            // Find directions for point movement
            function getBevelVec( inPt, inPrev, inNext ) {
                // computes for inPt the corresponding point inPt' on a new contour
                // shifted by 1 unit (length of normalized vector) to the left
                // if we walk along contour clockwise, this new contour is outside the old one
                //
                // inPt' is the intersection of the two lines parallel to the two
                // adjacent edges of inPt at a distance of 1 unit on the left side.
                var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
                // good reading for geometry algorithms (here: line-line intersection)
                // http://geomalgorithms.com/a05-_intersect-1.html
                var v_prev_x = inPt.x - inPrev.x,
                    v_prev_y = inPt.y - inPrev.y;
                var v_next_x = inNext.x - inPt.x,
                    v_next_y = inNext.y - inPt.y;
                var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
                // check for collinear edges
                var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
                if ( Math.abs( collinear0 ) > Number.EPSILON ) {
                    // not collinear
                    // length of vectors for normalizing
                    var v_prev_len = Math.sqrt( v_prev_lensq );
                    var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
                    // shift adjacent points by unit vectors to the left
                    var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
                    var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
                    var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
                    var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
                    // scaling factor for v_prev to intersection point
                    var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
                            ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
                        ( v_prev_x * v_next_y - v_prev_y * v_next_x );
                    // vector from inPt to intersection point
                    v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
                    v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
                    // Don't normalize!, otherwise sharp corners become ugly
                    // but prevent crazy spikes
                    var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
                    if ( v_trans_lensq <= 2 ) {
                        return new Vector2( v_trans_x, v_trans_y );
                    } else {
                        shrink_by = Math.sqrt( v_trans_lensq / 2 );
                    }
                } else {
                    // handle special case of collinear edges
                    var direction_eq = false; // assumes: opposite
                    if ( v_prev_x > Number.EPSILON ) {
                        if ( v_next_x > Number.EPSILON ) {
                            direction_eq = true;
                        }
                    } else {
                        if ( v_prev_x < - Number.EPSILON ) {
                            if ( v_next_x < - Number.EPSILON ) {
                                direction_eq = true;
                            }
                        } else {
                            if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
                                direction_eq = true;
                            }
                        }
                    }
                    if ( direction_eq ) {
                        // console.log("Warning: lines are a straight sequence");
                        v_trans_x = - v_prev_y;
                        v_trans_y = v_prev_x;
                        shrink_by = Math.sqrt( v_prev_lensq );
                    } else {
                        // console.log("Warning: lines are a straight spike");
                        v_trans_x = v_prev_x;
                        v_trans_y = v_prev_y;
                        shrink_by = Math.sqrt( v_prev_lensq / 2 );
                    }
                }
                return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
            }
            var contourMovements = [];
            for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
                if ( j === il ) { j = 0; }
                if ( k === il ) { k = 0; }
                // (j)---(i)---(k)
                // console.log('i,j,k', i, j , k)
                contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
            }
            var holesMovements = [],
                oneHoleMovements, verticesMovements = contourMovements.concat();
            for ( h = 0, hl = holes.length; h < hl; h ++ ) {
                ahole = holes[ h ];
                oneHoleMovements = [];
                for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
                    if ( j === il ) { j = 0; }
                    if ( k === il ) { k = 0; }
                    // (j)---(i)---(k)
                    oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
                }
                holesMovements.push( oneHoleMovements );
                verticesMovements = verticesMovements.concat( oneHoleMovements );
            }
            // Loop bevelSegments, 1 for the front, 1 for the back
            for ( b = 0; b < bevelSegments; b ++ ) {
                //for ( b = bevelSegments; b > 0; b -- ) {
                t = b / bevelSegments;
                z = bevelThickness * Math.cos( t * Math.PI / 2 );
                bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
                // contract shape
                for ( i = 0, il = contour.length; i < il; i ++ ) {
                    vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
                    v( vert.x, vert.y, - z );
                }
                // expand holes
                for ( h = 0, hl = holes.length; h < hl; h ++ ) {
                    ahole = holes[ h ];
                    oneHoleMovements = holesMovements[ h ];
                    for ( i = 0, il = ahole.length; i < il; i ++ ) {
                        vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
                        v( vert.x, vert.y, - z );
                    }
                }
            }
            bs = bevelSize + bevelOffset;
            // Back facing vertices
            for ( i = 0; i < vlen; i ++ ) {
                vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
                if ( ! extrudeByPath ) {
                    v( vert.x, vert.y, 0 );
                } else {
                    // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
                    normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
                    binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
                    position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
                    v( position2.x, position2.y, position2.z );
                }
            }
            // Add stepped vertices...
            // Including front facing vertices
            var s;
            for ( s = 1; s <= steps; s ++ ) {
                for ( i = 0; i < vlen; i ++ ) {
                    vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
                    if ( ! extrudeByPath ) {
                        v( vert.x, vert.y, depth / steps * s );
                    } else {
                        // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
                        normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
                        binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
                        position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
                        v( position2.x, position2.y, position2.z );
                    }
                }
            }
            // Add bevel segments planes
            //for ( b = 1; b <= bevelSegments; b ++ ) {
            for ( b = bevelSegments - 1; b >= 0; b -- ) {
                t = b / bevelSegments;
                z = bevelThickness * Math.cos( t * Math.PI / 2 );
                bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
                // contract shape
                for ( i = 0, il = contour.length; i < il; i ++ ) {
                    vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
                    v( vert.x, vert.y, depth + z );
                }
                // expand holes
                for ( h = 0, hl = holes.length; h < hl; h ++ ) {
                    ahole = holes[ h ];
                    oneHoleMovements = holesMovements[ h ];
                    for ( i = 0, il = ahole.length; i < il; i ++ ) {
                        vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
                        if ( ! extrudeByPath ) {
                            v( vert.x, vert.y, depth + z );
                        } else {
                            v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
                        }
                    }
                }
            }
            /* Faces */
            // Top and bottom faces
            buildLidFaces();
            // Sides faces
            buildSideFaces();
            ///// Internal functions
            function buildLidFaces() {
                var start = verticesArray.length / 3;
                if ( bevelEnabled ) {
                    var layer = 0; // steps + 1
                    var offset = vlen * layer;
                    // Bottom faces
                    for ( i = 0; i < flen; i ++ ) {
                        face = faces[ i ];
                        f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
                    }
                    layer = steps + bevelSegments * 2;
                    offset = vlen * layer;
                    // Top faces
                    for ( i = 0; i < flen; i ++ ) {
                        face = faces[ i ];
                        f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
                    }
                } else {
                    // Bottom faces
                    for ( i = 0; i < flen; i ++ ) {
                        face = faces[ i ];
                        f3( face[ 2 ], face[ 1 ], face[ 0 ] );
                    }
                    // Top faces
                    for ( i = 0; i < flen; i ++ ) {
                        face = faces[ i ];
                        f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
                    }
                }
                scope.addGroup( start, verticesArray.length / 3 - start, 0 );
            }
            // Create faces for the z-sides of the shape
            function buildSideFaces() {
                var start = verticesArray.length / 3;
                var layeroffset = 0;
                sidewalls( contour, layeroffset );
                layeroffset += contour.length;
                for ( h = 0, hl = holes.length; h < hl; h ++ ) {
                    ahole = holes[ h ];
                    sidewalls( ahole, layeroffset );
                    //, true
                    layeroffset += ahole.length;
                }
                scope.addGroup( start, verticesArray.length / 3 - start, 1 );
            }
            function sidewalls( contour, layeroffset ) {
                var j, k;
                i = contour.length;
                while ( -- i >= 0 ) {
                    j = i;
                    k = i - 1;
                    if ( k < 0 ) { k = contour.length - 1; }
                    //console.log('b', i,j, i-1, k,vertices.length);
                    var s = 0,
                        sl = steps + bevelSegments * 2;
                    for ( s = 0; s < sl; s ++ ) {
                        var slen1 = vlen * s;
                        var slen2 = vlen * ( s + 1 );
                        var a = layeroffset + j + slen1,
                            b = layeroffset + k + slen1,
                            c = layeroffset + k + slen2,
                            d = layeroffset + j + slen2;
                        f4( a, b, c, d );
                    }
                }
            }
            function v( x, y, z ) {
                placeholder.push( x );
                placeholder.push( y );
                placeholder.push( z );
            }
            function f3( a, b, c ) {
                addVertex( a );
                addVertex( b );
                addVertex( c );
                var nextIndex = verticesArray.length / 3;
                var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
                addUV( uvs[ 0 ] );
                addUV( uvs[ 1 ] );
                addUV( uvs[ 2 ] );
            }
            function f4( a, b, c, d ) {
                addVertex( a );
                addVertex( b );
                addVertex( d );
                addVertex( b );
                addVertex( c );
                addVertex( d );
                var nextIndex = verticesArray.length / 3;
                var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
                addUV( uvs[ 0 ] );
                addUV( uvs[ 1 ] );
                addUV( uvs[ 3 ] );
                addUV( uvs[ 1 ] );
                addUV( uvs[ 2 ] );
                addUV( uvs[ 3 ] );
            }
            function addVertex( index ) {
                verticesArray.push( placeholder[ index * 3 + 0 ] );
                verticesArray.push( placeholder[ index * 3 + 1 ] );
                verticesArray.push( placeholder[ index * 3 + 2 ] );
            }
            function addUV( vector2 ) {
                uvArray.push( vector2.x );
                uvArray.push( vector2.y );
            }
        }
    }
    ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;
    ExtrudeBufferGeometry.prototype.toJSON = function () {
        var data = BufferGeometry.prototype.toJSON.call( this );
        var shapes = this.parameters.shapes;
        var options = this.parameters.options;
        return toJSON( shapes, options, data );
    };
    //
    var WorldUVGenerator = {
        generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {
            var a_x = vertices[ indexA * 3 ];
            var a_y = vertices[ indexA * 3 + 1 ];
            var b_x = vertices[ indexB * 3 ];
            var b_y = vertices[ indexB * 3 + 1 ];
            var c_x = vertices[ indexC * 3 ];
            var c_y = vertices[ indexC * 3 + 1 ];
            return [
                new Vector2( a_x, a_y ),
                new Vector2( b_x, b_y ),
                new Vector2( c_x, c_y )
            ];
        },
        generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {
            var a_x = vertices[ indexA * 3 ];
            var a_y = vertices[ indexA * 3 + 1 ];
            var a_z = vertices[ indexA * 3 + 2 ];
            var b_x = vertices[ indexB * 3 ];
            var b_y = vertices[ indexB * 3 + 1 ];
            var b_z = vertices[ indexB * 3 + 2 ];
            var c_x = vertices[ indexC * 3 ];
            var c_y = vertices[ indexC * 3 + 1 ];
            var c_z = vertices[ indexC * 3 + 2 ];
            var d_x = vertices[ indexD * 3 ];
            var d_y = vertices[ indexD * 3 + 1 ];
            var d_z = vertices[ indexD * 3 + 2 ];
            if ( Math.abs( a_y - b_y ) < 0.01 ) {
                return [
                    new Vector2( a_x, 1 - a_z ),
                    new Vector2( b_x, 1 - b_z ),
                    new Vector2( c_x, 1 - c_z ),
                    new Vector2( d_x, 1 - d_z )
                ];
            } else {
                return [
                    new Vector2( a_y, 1 - a_z ),
                    new Vector2( b_y, 1 - b_z ),
                    new Vector2( c_y, 1 - c_z ),
                    new Vector2( d_y, 1 - d_z )
                ];
            }
        }
    };
    function toJSON( shapes, options, data ) {
        //
        data.shapes = [];
        if ( Array.isArray( shapes ) ) {
            for ( var i = 0, l = shapes.length; i < l; i ++ ) {
                var shape = shapes[ i ];
                data.shapes.push( shape.uuid );
            }
        } else {
            data.shapes.push( shapes.uuid );
        }
        //
        if ( options.extrudePath !== undefined ) { data.options.extrudePath = options.extrudePath.toJSON(); }
        return data;
    }
    /**
     * @author zz85 / http://www.lab4games.net/zz85/blog
     * @author alteredq / http://alteredqualia.com/
     *
     * Text = 3D Text
     *
     * parameters = {
     * font: , // font
     *
     * size: , // size of the text
     * height: , // thickness to extrude text
     * curveSegments: , // number of points on the curves
     *
     * bevelEnabled: , // turn on bevel
     * bevelThickness: , // how deep into text bevel goes
     * bevelSize: , // how far from text outline (including bevelOffset) is bevel
     * bevelOffset: // how far from text outline does bevel start
     * }
     */
    // TextGeometry
    function TextGeometry( text, parameters ) {
        Geometry.call( this );
        this.type = 'TextGeometry';
        this.parameters = {
            text: text,
            parameters: parameters
        };
        this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
        this.mergeVertices();
    }
    TextGeometry.prototype = Object.create( Geometry.prototype );
    TextGeometry.prototype.constructor = TextGeometry;
    // TextBufferGeometry
    function TextBufferGeometry( text, parameters ) {
        parameters = parameters || {};
        var font = parameters.font;
        if ( ! ( font && font.isFont ) ) {
            console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
            return new Geometry();
        }
        var shapes = font.generateShapes( text, parameters.size );
        // translate parameters to ExtrudeGeometry API
        parameters.depth = parameters.height !== undefined ? parameters.height : 50;
        // defaults
        if ( parameters.bevelThickness === undefined ) { parameters.bevelThickness = 10; }
        if ( parameters.bevelSize === undefined ) { parameters.bevelSize = 8; }
        if ( parameters.bevelEnabled === undefined ) { parameters.bevelEnabled = false; }
        ExtrudeBufferGeometry.call( this, shapes, parameters );
        this.type = 'TextBufferGeometry';
    }
    TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
    TextBufferGeometry.prototype.constructor = TextBufferGeometry;
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author benaadams / https://twitter.com/ben_a_adams
     * @author Mugen87 / https://github.com/Mugen87
     */
    // SphereGeometry
    function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
        Geometry.call( this );
        this.type = 'SphereGeometry';
        this.parameters = {
            radius: radius,
            widthSegments: widthSegments,
            heightSegments: heightSegments,
            phiStart: phiStart,
            phiLength: phiLength,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
        this.mergeVertices();
    }
    SphereGeometry.prototype = Object.create( Geometry.prototype );
    SphereGeometry.prototype.constructor = SphereGeometry;
    // SphereBufferGeometry
    function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
        BufferGeometry.call( this );
        this.type = 'SphereBufferGeometry';
        this.parameters = {
            radius: radius,
            widthSegments: widthSegments,
            heightSegments: heightSegments,
            phiStart: phiStart,
            phiLength: phiLength,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        radius = radius || 1;
        widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
        heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );
        phiStart = phiStart !== undefined ? phiStart : 0;
        phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;
        thetaStart = thetaStart !== undefined ? thetaStart : 0;
        thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;
        var thetaEnd = Math.min( thetaStart + thetaLength, Math.PI );
        var ix, iy;
        var index = 0;
        var grid = [];
        var vertex = new Vector3();
        var normal = new Vector3();
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // generate vertices, normals and uvs
        for ( iy = 0; iy <= heightSegments; iy ++ ) {
            var verticesRow = [];
            var v = iy / heightSegments;
            // special case for the poles
            var uOffset = 0;
            if ( iy == 0 && thetaStart == 0 ) {
                uOffset = 0.5 / widthSegments;
            } else if ( iy == heightSegments && thetaEnd == Math.PI ) {
                uOffset = - 0.5 / widthSegments;
            }
            for ( ix = 0; ix <= widthSegments; ix ++ ) {
                var u = ix / widthSegments;
                // vertex
                vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
                vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
                vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
                vertices.push( vertex.x, vertex.y, vertex.z );
                // normal
                normal.copy( vertex ).normalize();
                normals.push( normal.x, normal.y, normal.z );
                // uv
                uvs.push( u + uOffset, 1 - v );
                verticesRow.push( index ++ );
            }
            grid.push( verticesRow );
        }
        // indices
        for ( iy = 0; iy < heightSegments; iy ++ ) {
            for ( ix = 0; ix < widthSegments; ix ++ ) {
                var a = grid[ iy ][ ix + 1 ];
                var b = grid[ iy ][ ix ];
                var c = grid[ iy + 1 ][ ix ];
                var d = grid[ iy + 1 ][ ix + 1 ];
                if ( iy !== 0 || thetaStart > 0 ) { indices.push( a, b, d ); }
                if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) { indices.push( b, c, d ); }
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    }
    SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;
    /**
     * @author Kaleb Murphy
     * @author Mugen87 / https://github.com/Mugen87
     */
    // RingGeometry
    function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
        Geometry.call( this );
        this.type = 'RingGeometry';
        this.parameters = {
            innerRadius: innerRadius,
            outerRadius: outerRadius,
            thetaSegments: thetaSegments,
            phiSegments: phiSegments,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
        this.mergeVertices();
    }
    RingGeometry.prototype = Object.create( Geometry.prototype );
    RingGeometry.prototype.constructor = RingGeometry;
    // RingBufferGeometry
    function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
        BufferGeometry.call( this );
        this.type = 'RingBufferGeometry';
        this.parameters = {
            innerRadius: innerRadius,
            outerRadius: outerRadius,
            thetaSegments: thetaSegments,
            phiSegments: phiSegments,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        innerRadius = innerRadius || 0.5;
        outerRadius = outerRadius || 1;
        thetaStart = thetaStart !== undefined ? thetaStart : 0;
        thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
        thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
        phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // some helper variables
        var segment;
        var radius = innerRadius;
        var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
        var vertex = new Vector3();
        var uv = new Vector2();
        var j, i;
        // generate vertices, normals and uvs
        for ( j = 0; j <= phiSegments; j ++ ) {
            for ( i = 0; i <= thetaSegments; i ++ ) {
                // values are generate from the inside of the ring to the outside
                segment = thetaStart + i / thetaSegments * thetaLength;
                // vertex
                vertex.x = radius * Math.cos( segment );
                vertex.y = radius * Math.sin( segment );
                vertices.push( vertex.x, vertex.y, vertex.z );
                // normal
                normals.push( 0, 0, 1 );
                // uv
                uv.x = ( vertex.x / outerRadius + 1 ) / 2;
                uv.y = ( vertex.y / outerRadius + 1 ) / 2;
                uvs.push( uv.x, uv.y );
            }
            // increase the radius for next row of vertices
            radius += radiusStep;
        }
        // indices
        for ( j = 0; j < phiSegments; j ++ ) {
            var thetaSegmentLevel = j * ( thetaSegments + 1 );
            for ( i = 0; i < thetaSegments; i ++ ) {
                segment = i + thetaSegmentLevel;
                var a = segment;
                var b = segment + thetaSegments + 1;
                var c = segment + thetaSegments + 2;
                var d = segment + 1;
                // faces
                indices.push( a, b, d );
                indices.push( b, c, d );
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    }
    RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    RingBufferGeometry.prototype.constructor = RingBufferGeometry;
    /**
     * @author zz85 / https://github.com/zz85
     * @author bhouston / http://clara.io
     * @author Mugen87 / https://github.com/Mugen87
     */
    // LatheGeometry
    function LatheGeometry( points, segments, phiStart, phiLength ) {
        Geometry.call( this );
        this.type = 'LatheGeometry';
        this.parameters = {
            points: points,
            segments: segments,
            phiStart: phiStart,
            phiLength: phiLength
        };
        this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
        this.mergeVertices();
    }
    LatheGeometry.prototype = Object.create( Geometry.prototype );
    LatheGeometry.prototype.constructor = LatheGeometry;
    // LatheBufferGeometry
    function LatheBufferGeometry( points, segments, phiStart, phiLength ) {
        BufferGeometry.call( this );
        this.type = 'LatheBufferGeometry';
        this.parameters = {
            points: points,
            segments: segments,
            phiStart: phiStart,
            phiLength: phiLength
        };
        segments = Math.floor( segments ) || 12;
        phiStart = phiStart || 0;
        phiLength = phiLength || Math.PI * 2;
        // clamp phiLength so it's in range of [ 0, 2PI ]
        phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 );
        // buffers
        var indices = [];
        var vertices = [];
        var uvs = [];
        // helper variables
        var base;
        var inverseSegments = 1.0 / segments;
        var vertex = new Vector3();
        var uv = new Vector2();
        var i, j;
        // generate vertices and uvs
        for ( i = 0; i <= segments; i ++ ) {
            var phi = phiStart + i * inverseSegments * phiLength;
            var sin = Math.sin( phi );
            var cos = Math.cos( phi );
            for ( j = 0; j <= ( points.length - 1 ); j ++ ) {
                // vertex
                vertex.x = points[ j ].x * sin;
                vertex.y = points[ j ].y;
                vertex.z = points[ j ].x * cos;
                vertices.push( vertex.x, vertex.y, vertex.z );
                // uv
                uv.x = i / segments;
                uv.y = j / ( points.length - 1 );
                uvs.push( uv.x, uv.y );
            }
        }
        // indices
        for ( i = 0; i < segments; i ++ ) {
            for ( j = 0; j < ( points.length - 1 ); j ++ ) {
                base = j + i * points.length;
                var a = base;
                var b = base + points.length;
                var c = base + points.length + 1;
                var d = base + 1;
                // faces
                indices.push( a, b, d );
                indices.push( b, c, d );
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
        // generate normals
        this.computeVertexNormals();
        // if the geometry is closed, we need to average the normals along the seam.
        // because the corresponding vertices are identical (but still have different UVs).
        if ( phiLength === Math.PI * 2 ) {
            var normals = this.attributes.normal.array;
            var n1 = new Vector3();
            var n2 = new Vector3();
            var n = new Vector3();
            // this is the buffer offset for the last line of vertices
            base = segments * points.length * 3;
            for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) {
                // select the normal of the vertex in the first line
                n1.x = normals[ j + 0 ];
                n1.y = normals[ j + 1 ];
                n1.z = normals[ j + 2 ];
                // select the normal of the vertex in the last line
                n2.x = normals[ base + j + 0 ];
                n2.y = normals[ base + j + 1 ];
                n2.z = normals[ base + j + 2 ];
                // average normals
                n.addVectors( n1, n2 ).normalize();
                // assign the new values to both normals
                normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
                normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
                normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;
            }
        }
    }
    LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;
    /**
     * @author jonobr1 / http://jonobr1.com
     * @author Mugen87 / https://github.com/Mugen87
     */
    // ShapeGeometry
    function ShapeGeometry( shapes, curveSegments ) {
        Geometry.call( this );
        this.type = 'ShapeGeometry';
        if ( typeof curveSegments === 'object' ) {
            console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );
            curveSegments = curveSegments.curveSegments;
        }
        this.parameters = {
            shapes: shapes,
            curveSegments: curveSegments
        };
        this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
        this.mergeVertices();
    }
    ShapeGeometry.prototype = Object.create( Geometry.prototype );
    ShapeGeometry.prototype.constructor = ShapeGeometry;
    ShapeGeometry.prototype.toJSON = function () {
        var data = Geometry.prototype.toJSON.call( this );
        var shapes = this.parameters.shapes;
        return toJSON$1( shapes, data );
    };
    // ShapeBufferGeometry
    function ShapeBufferGeometry( shapes, curveSegments ) {
        BufferGeometry.call( this );
        this.type = 'ShapeBufferGeometry';
        this.parameters = {
            shapes: shapes,
            curveSegments: curveSegments
        };
        curveSegments = curveSegments || 12;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // helper variables
        var groupStart = 0;
        var groupCount = 0;
        // allow single and array values for "shapes" parameter
        if ( Array.isArray( shapes ) === false ) {
            addShape( shapes );
        } else {
            for ( var i = 0; i < shapes.length; i ++ ) {
                addShape( shapes[ i ] );
                this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support
                groupStart += groupCount;
                groupCount = 0;
            }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
        // helper functions
        function addShape( shape ) {
            var i, l, shapeHole;
            var indexOffset = vertices.length / 3;
            var points = shape.extractPoints( curveSegments );
            var shapeVertices = points.shape;
            var shapeHoles = points.holes;
            // check direction of vertices
            if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {
                shapeVertices = shapeVertices.reverse();
            }
            for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {
                shapeHole = shapeHoles[ i ];
                if ( ShapeUtils.isClockWise( shapeHole ) === true ) {
                    shapeHoles[ i ] = shapeHole.reverse();
                }
            }
            var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );
            // join vertices of inner and outer paths to a single array
            for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {
                shapeHole = shapeHoles[ i ];
                shapeVertices = shapeVertices.concat( shapeHole );
            }
            // vertices, normals, uvs
            for ( i = 0, l = shapeVertices.length; i < l; i ++ ) {
                var vertex = shapeVertices[ i ];
                vertices.push( vertex.x, vertex.y, 0 );
                normals.push( 0, 0, 1 );
                uvs.push( vertex.x, vertex.y ); // world uvs
            }
            // incides
            for ( i = 0, l = faces.length; i < l; i ++ ) {
                var face = faces[ i ];
                var a = face[ 0 ] + indexOffset;
                var b = face[ 1 ] + indexOffset;
                var c = face[ 2 ] + indexOffset;
                indices.push( a, b, c );
                groupCount += 3;
            }
        }
    }
    ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;
    ShapeBufferGeometry.prototype.toJSON = function () {
        var data = BufferGeometry.prototype.toJSON.call( this );
        var shapes = this.parameters.shapes;
        return toJSON$1( shapes, data );
    };
    //
    function toJSON$1( shapes, data ) {
        data.shapes = [];
        if ( Array.isArray( shapes ) ) {
            for ( var i = 0, l = shapes.length; i < l; i ++ ) {
                var shape = shapes[ i ];
                data.shapes.push( shape.uuid );
            }
        } else {
            data.shapes.push( shapes.uuid );
        }
        return data;
    }
    /**
     * @author WestLangley / http://github.com/WestLangley
     * @author Mugen87 / https://github.com/Mugen87
     */
    function EdgesGeometry( geometry, thresholdAngle ) {
        BufferGeometry.call( this );
        this.type = 'EdgesGeometry';
        this.parameters = {
            thresholdAngle: thresholdAngle
        };
        thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;
        // buffer
        var vertices = [];
        // helper variables
        var thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle );
        var edge = [ 0, 0 ], edges = {}, edge1, edge2;
        var key, keys = [ 'a', 'b', 'c' ];
        // prepare source geometry
        var geometry2;
        if ( geometry.isBufferGeometry ) {
            geometry2 = new Geometry();
            geometry2.fromBufferGeometry( geometry );
        } else {
            geometry2 = geometry.clone();
        }
        geometry2.mergeVertices();
        geometry2.computeFaceNormals();
        var sourceVertices = geometry2.vertices;
        var faces = geometry2.faces;
        // now create a data structure where each entry represents an edge with its adjoining faces
        for ( var i = 0, l = faces.length; i < l; i ++ ) {
            var face = faces[ i ];
            for ( var j = 0; j < 3; j ++ ) {
                edge1 = face[ keys[ j ] ];
                edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
                edge[ 0 ] = Math.min( edge1, edge2 );
                edge[ 1 ] = Math.max( edge1, edge2 );
                key = edge[ 0 ] + ',' + edge[ 1 ];
                if ( edges[ key ] === undefined ) {
                    edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };
                } else {
                    edges[ key ].face2 = i;
                }
            }
        }
        // generate vertices
        for ( key in edges ) {
            var e = edges[ key ];
            // an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.
            if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {
                var vertex = sourceVertices[ e.index1 ];
                vertices.push( vertex.x, vertex.y, vertex.z );
                vertex = sourceVertices[ e.index2 ];
                vertices.push( vertex.x, vertex.y, vertex.z );
            }
        }
        // build geometry
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    }
    EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
    EdgesGeometry.prototype.constructor = EdgesGeometry;
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author Mugen87 / https://github.com/Mugen87
     */
    // CylinderGeometry
    function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
        Geometry.call( this );
        this.type = 'CylinderGeometry';
        this.parameters = {
            radiusTop: radiusTop,
            radiusBottom: radiusBottom,
            height: height,
            radialSegments: radialSegments,
            heightSegments: heightSegments,
            openEnded: openEnded,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
        this.mergeVertices();
    }
    CylinderGeometry.prototype = Object.create( Geometry.prototype );
    CylinderGeometry.prototype.constructor = CylinderGeometry;
    // CylinderBufferGeometry
    function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
        BufferGeometry.call( this );
        this.type = 'CylinderBufferGeometry';
        this.parameters = {
            radiusTop: radiusTop,
            radiusBottom: radiusBottom,
            height: height,
            radialSegments: radialSegments,
            heightSegments: heightSegments,
            openEnded: openEnded,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        var scope = this;
        radiusTop = radiusTop !== undefined ? radiusTop : 1;
        radiusBottom = radiusBottom !== undefined ? radiusBottom : 1;
        height = height || 1;
        radialSegments = Math.floor( radialSegments ) || 8;
        heightSegments = Math.floor( heightSegments ) || 1;
        openEnded = openEnded !== undefined ? openEnded : false;
        thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
        thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // helper variables
        var index = 0;
        var indexArray = [];
        var halfHeight = height / 2;
        var groupStart = 0;
        // generate geometry
        generateTorso();
        if ( openEnded === false ) {
            if ( radiusTop > 0 ) { generateCap( true ); }
            if ( radiusBottom > 0 ) { generateCap( false ); }
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
        function generateTorso() {
            var x, y;
            var normal = new Vector3();
            var vertex = new Vector3();
            var groupCount = 0;
            // this will be used to calculate the normal
            var slope = ( radiusBottom - radiusTop ) / height;
            // generate vertices, normals and uvs
            for ( y = 0; y <= heightSegments; y ++ ) {
                var indexRow = [];
                var v = y / heightSegments;
                // calculate the radius of the current row
                var radius = v * ( radiusBottom - radiusTop ) + radiusTop;
                for ( x = 0; x <= radialSegments; x ++ ) {
                    var u = x / radialSegments;
                    var theta = u * thetaLength + thetaStart;
                    var sinTheta = Math.sin( theta );
                    var cosTheta = Math.cos( theta );
                    // vertex
                    vertex.x = radius * sinTheta;
                    vertex.y = - v * height + halfHeight;
                    vertex.z = radius * cosTheta;
                    vertices.push( vertex.x, vertex.y, vertex.z );
                    // normal
                    normal.set( sinTheta, slope, cosTheta ).normalize();
                    normals.push( normal.x, normal.y, normal.z );
                    // uv
                    uvs.push( u, 1 - v );
                    // save index of vertex in respective row
                    indexRow.push( index ++ );
                }
                // now save vertices of the row in our index array
                indexArray.push( indexRow );
            }
            // generate indices
            for ( x = 0; x < radialSegments; x ++ ) {
                for ( y = 0; y < heightSegments; y ++ ) {
                    // we use the index array to access the correct indices
                    var a = indexArray[ y ][ x ];
                    var b = indexArray[ y + 1 ][ x ];
                    var c = indexArray[ y + 1 ][ x + 1 ];
                    var d = indexArray[ y ][ x + 1 ];
                    // faces
                    indices.push( a, b, d );
                    indices.push( b, c, d );
                    // update group counter
                    groupCount += 6;
                }
            }
            // add a group to the geometry. this will ensure multi material support
            scope.addGroup( groupStart, groupCount, 0 );
            // calculate new start value for groups
            groupStart += groupCount;
        }
        function generateCap( top ) {
            var x, centerIndexStart, centerIndexEnd;
            var uv = new Vector2();
            var vertex = new Vector3();
            var groupCount = 0;
            var radius = ( top === true ) ? radiusTop : radiusBottom;
            var sign = ( top === true ) ? 1 : - 1;
            // save the index of the first center vertex
            centerIndexStart = index;
            // first we generate the center vertex data of the cap.
            // because the geometry needs one set of uvs per face,
            // we must generate a center vertex per face/segment
            for ( x = 1; x <= radialSegments; x ++ ) {
                // vertex
                vertices.push( 0, halfHeight * sign, 0 );
                // normal
                normals.push( 0, sign, 0 );
                // uv
                uvs.push( 0.5, 0.5 );
                // increase index
                index ++;
            }
            // save the index of the last center vertex
            centerIndexEnd = index;
            // now we generate the surrounding vertices, normals and uvs
            for ( x = 0; x <= radialSegments; x ++ ) {
                var u = x / radialSegments;
                var theta = u * thetaLength + thetaStart;
                var cosTheta = Math.cos( theta );
                var sinTheta = Math.sin( theta );
                // vertex
                vertex.x = radius * sinTheta;
                vertex.y = halfHeight * sign;
                vertex.z = radius * cosTheta;
                vertices.push( vertex.x, vertex.y, vertex.z );
                // normal
                normals.push( 0, sign, 0 );
                // uv
                uv.x = ( cosTheta * 0.5 ) + 0.5;
                uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
                uvs.push( uv.x, uv.y );
                // increase index
                index ++;
            }
            // generate indices
            for ( x = 0; x < radialSegments; x ++ ) {
                var c = centerIndexStart + x;
                var i = centerIndexEnd + x;
                if ( top === true ) {
                    // face top
                    indices.push( i, i + 1, c );
                } else {
                    // face bottom
                    indices.push( i + 1, i, c );
                }
                groupCount += 3;
            }
            // add a group to the geometry. this will ensure multi material support
            scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
            // calculate new start value for groups
            groupStart += groupCount;
        }
    }
    CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;
    /**
     * @author abelnation / http://github.com/abelnation
     */
    // ConeGeometry
    function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
        CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
        this.type = 'ConeGeometry';
        this.parameters = {
            radius: radius,
            height: height,
            radialSegments: radialSegments,
            heightSegments: heightSegments,
            openEnded: openEnded,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
    }
    ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
    ConeGeometry.prototype.constructor = ConeGeometry;
    // ConeBufferGeometry
    function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
        CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
        this.type = 'ConeBufferGeometry';
        this.parameters = {
            radius: radius,
            height: height,
            radialSegments: radialSegments,
            heightSegments: heightSegments,
            openEnded: openEnded,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
    }
    ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
    ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;
    /**
     * @author benaadams / https://twitter.com/ben_a_adams
     * @author Mugen87 / https://github.com/Mugen87
     * @author hughes
     */
    // CircleGeometry
    function CircleGeometry( radius, segments, thetaStart, thetaLength ) {
        Geometry.call( this );
        this.type = 'CircleGeometry';
        this.parameters = {
            radius: radius,
            segments: segments,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
        this.mergeVertices();
    }
    CircleGeometry.prototype = Object.create( Geometry.prototype );
    CircleGeometry.prototype.constructor = CircleGeometry;
    // CircleBufferGeometry
    function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {
        BufferGeometry.call( this );
        this.type = 'CircleBufferGeometry';
        this.parameters = {
            radius: radius,
            segments: segments,
            thetaStart: thetaStart,
            thetaLength: thetaLength
        };
        radius = radius || 1;
        segments = segments !== undefined ? Math.max( 3, segments ) : 8;
        thetaStart = thetaStart !== undefined ? thetaStart : 0;
        thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
        // buffers
        var indices = [];
        var vertices = [];
        var normals = [];
        var uvs = [];
        // helper variables
        var i, s;
        var vertex = new Vector3();
        var uv = new Vector2();
        // center point
        vertices.push( 0, 0, 0 );
        normals.push( 0, 0, 1 );
        uvs.push( 0.5, 0.5 );
        for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) {
            var segment = thetaStart + s / segments * thetaLength;
            // vertex
            vertex.x = radius * Math.cos( segment );
            vertex.y = radius * Math.sin( segment );
            vertices.push( vertex.x, vertex.y, vertex.z );
            // normal
            normals.push( 0, 0, 1 );
            // uvs
            uv.x = ( vertices[ i ] / radius + 1 ) / 2;
            uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;
            uvs.push( uv.x, uv.y );
        }
        // indices
        for ( i = 1; i <= segments; i ++ ) {
            indices.push( i, i + 1, 0 );
        }
        // build geometry
        this.setIndex( indices );
        this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
        this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
        this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    }
    CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;
    var Geometries = /*#__PURE__*/Object.freeze({
        __proto__: null,
        WireframeGeometry: WireframeGeometry,
        ParametricGeometry: ParametricGeometry,
        ParametricBufferGeometry: ParametricBufferGeometry,
        TetrahedronGeometry: TetrahedronGeometry,
        TetrahedronBufferGeometry: TetrahedronBufferGeometry,
        OctahedronGeometry: OctahedronGeometry,
        OctahedronBufferGeometry: OctahedronBufferGeometry,
        IcosahedronGeometry: IcosahedronGeometry,
        IcosahedronBufferGeometry: IcosahedronBufferGeometry,
        DodecahedronGeometry: DodecahedronGeometry,
        DodecahedronBufferGeometry: DodecahedronBufferGeometry,
        PolyhedronGeometry: PolyhedronGeometry,
        PolyhedronBufferGeometry: PolyhedronBufferGeometry,
        TubeGeometry: TubeGeometry,
        TubeBufferGeometry: TubeBufferGeometry,
        TorusKnotGeometry: TorusKnotGeometry,
        TorusKnotBufferGeometry: TorusKnotBufferGeometry,
        TorusGeometry: TorusGeometry,
        TorusBufferGeometry: TorusBufferGeometry,
        TextGeometry: TextGeometry,
        TextBufferGeometry: TextBufferGeometry,
        SphereGeometry: SphereGeometry,
        SphereBufferGeometry: SphereBufferGeometry,
        RingGeometry: RingGeometry,
        RingBufferGeometry: RingBufferGeometry,
        PlaneGeometry: PlaneGeometry,
        PlaneBufferGeometry: PlaneBufferGeometry,
        LatheGeometry: LatheGeometry,
        LatheBufferGeometry: LatheBufferGeometry,
        ShapeGeometry: ShapeGeometry,
        ShapeBufferGeometry: ShapeBufferGeometry,
        ExtrudeGeometry: ExtrudeGeometry,
        ExtrudeBufferGeometry: ExtrudeBufferGeometry,
        EdgesGeometry: EdgesGeometry,
        ConeGeometry: ConeGeometry,
        ConeBufferGeometry: ConeBufferGeometry,
        CylinderGeometry: CylinderGeometry,
        CylinderBufferGeometry: CylinderBufferGeometry,
        CircleGeometry: CircleGeometry,
        CircleBufferGeometry: CircleBufferGeometry,
        BoxGeometry: BoxGeometry,
        BoxBufferGeometry: BoxBufferGeometry
    });
    /**
     * @author mrdoob / http://mrdoob.com/
     *
     * parameters = {
     * color:
     * }
     */
    function ShadowMaterial( parameters ) {
        Material.call( this );
        this.type = 'ShadowMaterial';
        this.color = new Color( 0x000000 );
        this.transparent = true;
        this.setValues( parameters );
    }
    ShadowMaterial.prototype = Object.create( Material.prototype );
    ShadowMaterial.prototype.constructor = ShadowMaterial;
    ShadowMaterial.prototype.isShadowMaterial = true;
    ShadowMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        return this;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function RawShaderMaterial( parameters ) {
        ShaderMaterial.call( this, parameters );
        this.type = 'RawShaderMaterial';
    }
    RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
    RawShaderMaterial.prototype.constructor = RawShaderMaterial;
    RawShaderMaterial.prototype.isRawShaderMaterial = true;
    /**
     * @author WestLangley / http://github.com/WestLangley
     *
     * parameters = {
     * color: ,
     * roughness: ,
     * metalness: ,
     * opacity: ,
     *
     * map: new THREE.Texture( ),
     *
     * lightMap: new THREE.Texture( ),
     * lightMapIntensity:
     *
     * aoMap: new THREE.Texture( ),
     * aoMapIntensity:
     *
     * emissive: ,
     * emissiveIntensity:
     * emissiveMap: new THREE.Texture( ),
     *
     * bumpMap: new THREE.Texture( ),
     * bumpScale: ,
     *
     * normalMap: new THREE.Texture( ),
     * normalMapType: THREE.TangentSpaceNormalMap,
     * normalScale: ,
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias: ,
     *
     * roughnessMap: new THREE.Texture( ),
     *
     * metalnessMap: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
     * envMapIntensity:
     *
     * refractionRatio: ,
     *
     * wireframe: ,
     * wireframeLinewidth: ,
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function MeshStandardMaterial( parameters ) {
        Material.call( this );
        this.defines = { 'STANDARD': '' };
        this.type = 'MeshStandardMaterial';
        this.color = new Color( 0xffffff ); // diffuse
        this.roughness = 1.0;
        this.metalness = 0.0;
        this.map = null;
        this.lightMap = null;
        this.lightMapIntensity = 1.0;
        this.aoMap = null;
        this.aoMapIntensity = 1.0;
        this.emissive = new Color( 0x000000 );
        this.emissiveIntensity = 1.0;
        this.emissiveMap = null;
        this.bumpMap = null;
        this.bumpScale = 1;
        this.normalMap = null;
        this.normalMapType = TangentSpaceNormalMap;
        this.normalScale = new Vector2( 1, 1 );
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.roughnessMap = null;
        this.metalnessMap = null;
        this.alphaMap = null;
        this.envMap = null;
        this.envMapIntensity = 1.0;
        this.refractionRatio = 0.98;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.wireframeLinecap = 'round';
        this.wireframeLinejoin = 'round';
        this.skinning = false;
        this.morphTargets = false;
        this.morphNormals = false;
        this.vertexTangents = false;
        this.setValues( parameters );
    }
    MeshStandardMaterial.prototype = Object.create( Material.prototype );
    MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;
    MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
    MeshStandardMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.defines = { 'STANDARD': '' };
        this.color.copy( source.color );
        this.roughness = source.roughness;
        this.metalness = source.metalness;
        this.map = source.map;
        this.lightMap = source.lightMap;
        this.lightMapIntensity = source.lightMapIntensity;
        this.aoMap = source.aoMap;
        this.aoMapIntensity = source.aoMapIntensity;
        this.emissive.copy( source.emissive );
        this.emissiveMap = source.emissiveMap;
        this.emissiveIntensity = source.emissiveIntensity;
        this.bumpMap = source.bumpMap;
        this.bumpScale = source.bumpScale;
        this.normalMap = source.normalMap;
        this.normalMapType = source.normalMapType;
        this.normalScale.copy( source.normalScale );
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        this.roughnessMap = source.roughnessMap;
        this.metalnessMap = source.metalnessMap;
        this.alphaMap = source.alphaMap;
        this.envMap = source.envMap;
        this.envMapIntensity = source.envMapIntensity;
        this.refractionRatio = source.refractionRatio;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.wireframeLinecap = source.wireframeLinecap;
        this.wireframeLinejoin = source.wireframeLinejoin;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        this.vertexTangents = source.vertexTangents;
        return this;
    };
    /**
     * @author WestLangley / http://github.com/WestLangley
     *
     * parameters = {
     * clearcoat: ,
     * clearcoatMap: new THREE.Texture( ),
     * clearcoatRoughness: ,
     * clearcoatRoughnessMap: new THREE.Texture( ),
     * clearcoatNormalScale: ,
     * clearcoatNormalMap: new THREE.Texture( ),
     *
     * reflectivity: ,
     *
     * sheen: ,
     *
     * transparency:
     * }
     */
    function MeshPhysicalMaterial( parameters ) {
        MeshStandardMaterial.call( this );
        this.defines = {
            'STANDARD': '',
            'PHYSICAL': ''
        };
        this.type = 'MeshPhysicalMaterial';
        this.clearcoat = 0.0;
        this.clearcoatMap = null;
        this.clearcoatRoughness = 0.0;
        this.clearcoatRoughnessMap = null;
        this.clearcoatNormalScale = new Vector2( 1, 1 );
        this.clearcoatNormalMap = null;
        this.reflectivity = 0.5; // maps to F0 = 0.04
        this.sheen = null; // null will disable sheen bsdf
        this.transparency = 0.0;
        this.setValues( parameters );
    }
    MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
    MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;
    MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
    MeshPhysicalMaterial.prototype.copy = function ( source ) {
        MeshStandardMaterial.prototype.copy.call( this, source );
        this.defines = {
            'STANDARD': '',
            'PHYSICAL': ''
        };
        this.clearcoat = source.clearcoat;
        this.clearcoatMap = source.clearcoatMap;
        this.clearcoatRoughness = source.clearcoatRoughness;
        this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
        this.clearcoatNormalMap = source.clearcoatNormalMap;
        this.clearcoatNormalScale.copy( source.clearcoatNormalScale );
        this.reflectivity = source.reflectivity;
        if ( source.sheen ) {
            this.sheen = ( this.sheen || new Color() ).copy( source.sheen );
        } else {
            this.sheen = null;
        }
        this.transparency = source.transparency;
        return this;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * specular: ,
     * shininess: ,
     * opacity: ,
     *
     * map: new THREE.Texture( ),
     *
     * lightMap: new THREE.Texture( ),
     * lightMapIntensity:
     *
     * aoMap: new THREE.Texture( ),
     * aoMapIntensity:
     *
     * emissive: ,
     * emissiveIntensity:
     * emissiveMap: new THREE.Texture( ),
     *
     * bumpMap: new THREE.Texture( ),
     * bumpScale: ,
     *
     * normalMap: new THREE.Texture( ),
     * normalMapType: THREE.TangentSpaceNormalMap,
     * normalScale: ,
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias: ,
     *
     * specularMap: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
     * combine: THREE.MultiplyOperation,
     * reflectivity: ,
     * refractionRatio: ,
     *
     * wireframe: ,
     * wireframeLinewidth: ,
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function MeshPhongMaterial( parameters ) {
        Material.call( this );
        this.type = 'MeshPhongMaterial';
        this.color = new Color( 0xffffff ); // diffuse
        this.specular = new Color( 0x111111 );
        this.shininess = 30;
        this.map = null;
        this.lightMap = null;
        this.lightMapIntensity = 1.0;
        this.aoMap = null;
        this.aoMapIntensity = 1.0;
        this.emissive = new Color( 0x000000 );
        this.emissiveIntensity = 1.0;
        this.emissiveMap = null;
        this.bumpMap = null;
        this.bumpScale = 1;
        this.normalMap = null;
        this.normalMapType = TangentSpaceNormalMap;
        this.normalScale = new Vector2( 1, 1 );
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.specularMap = null;
        this.alphaMap = null;
        this.envMap = null;
        this.combine = MultiplyOperation;
        this.reflectivity = 1;
        this.refractionRatio = 0.98;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.wireframeLinecap = 'round';
        this.wireframeLinejoin = 'round';
        this.skinning = false;
        this.morphTargets = false;
        this.morphNormals = false;
        this.setValues( parameters );
    }
    MeshPhongMaterial.prototype = Object.create( Material.prototype );
    MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;
    MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
    MeshPhongMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.specular.copy( source.specular );
        this.shininess = source.shininess;
        this.map = source.map;
        this.lightMap = source.lightMap;
        this.lightMapIntensity = source.lightMapIntensity;
        this.aoMap = source.aoMap;
        this.aoMapIntensity = source.aoMapIntensity;
        this.emissive.copy( source.emissive );
        this.emissiveMap = source.emissiveMap;
        this.emissiveIntensity = source.emissiveIntensity;
        this.bumpMap = source.bumpMap;
        this.bumpScale = source.bumpScale;
        this.normalMap = source.normalMap;
        this.normalMapType = source.normalMapType;
        this.normalScale.copy( source.normalScale );
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        this.specularMap = source.specularMap;
        this.alphaMap = source.alphaMap;
        this.envMap = source.envMap;
        this.combine = source.combine;
        this.reflectivity = source.reflectivity;
        this.refractionRatio = source.refractionRatio;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.wireframeLinecap = source.wireframeLinecap;
        this.wireframeLinejoin = source.wireframeLinejoin;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        return this;
    };
    /**
     * @author takahirox / http://github.com/takahirox
     *
     * parameters = {
     * color: ,
     * specular: ,
     * shininess: ,
     *
     * map: new THREE.Texture( ),
     * gradientMap: new THREE.Texture( ),
     *
     * lightMap: new THREE.Texture( ),
     * lightMapIntensity:
     *
     * aoMap: new THREE.Texture( ),
     * aoMapIntensity:
     *
     * emissive: ,
     * emissiveIntensity:
     * emissiveMap: new THREE.Texture( ),
     *
     * bumpMap: new THREE.Texture( ),
     * bumpScale: ,
     *
     * normalMap: new THREE.Texture( ),
     * normalMapType: THREE.TangentSpaceNormalMap,
     * normalScale: ,
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias: ,
     *
     * specularMap: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * wireframe: ,
     * wireframeLinewidth: ,
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function MeshToonMaterial( parameters ) {
        Material.call( this );
        this.defines = { 'TOON': '' };
        this.type = 'MeshToonMaterial';
        this.color = new Color( 0xffffff );
        this.specular = new Color( 0x111111 );
        this.shininess = 30;
        this.map = null;
        this.gradientMap = null;
        this.lightMap = null;
        this.lightMapIntensity = 1.0;
        this.aoMap = null;
        this.aoMapIntensity = 1.0;
        this.emissive = new Color( 0x000000 );
        this.emissiveIntensity = 1.0;
        this.emissiveMap = null;
        this.bumpMap = null;
        this.bumpScale = 1;
        this.normalMap = null;
        this.normalMapType = TangentSpaceNormalMap;
        this.normalScale = new Vector2( 1, 1 );
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.specularMap = null;
        this.alphaMap = null;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.wireframeLinecap = 'round';
        this.wireframeLinejoin = 'round';
        this.skinning = false;
        this.morphTargets = false;
        this.morphNormals = false;
        this.setValues( parameters );
    }
    MeshToonMaterial.prototype = Object.create( Material.prototype );
    MeshToonMaterial.prototype.constructor = MeshToonMaterial;
    MeshToonMaterial.prototype.isMeshToonMaterial = true;
    MeshToonMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.specular.copy( source.specular );
        this.shininess = source.shininess;
        this.map = source.map;
        this.gradientMap = source.gradientMap;
        this.lightMap = source.lightMap;
        this.lightMapIntensity = source.lightMapIntensity;
        this.aoMap = source.aoMap;
        this.aoMapIntensity = source.aoMapIntensity;
        this.emissive.copy( source.emissive );
        this.emissiveMap = source.emissiveMap;
        this.emissiveIntensity = source.emissiveIntensity;
        this.bumpMap = source.bumpMap;
        this.bumpScale = source.bumpScale;
        this.normalMap = source.normalMap;
        this.normalMapType = source.normalMapType;
        this.normalScale.copy( source.normalScale );
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        this.specularMap = source.specularMap;
        this.alphaMap = source.alphaMap;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.wireframeLinecap = source.wireframeLinecap;
        this.wireframeLinejoin = source.wireframeLinejoin;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        return this;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author WestLangley / http://github.com/WestLangley
     *
     * parameters = {
     * opacity: ,
     *
     * bumpMap: new THREE.Texture( ),
     * bumpScale: ,
     *
     * normalMap: new THREE.Texture( ),
     * normalMapType: THREE.TangentSpaceNormalMap,
     * normalScale: ,
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias: ,
     *
     * wireframe: ,
     * wireframeLinewidth:
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function MeshNormalMaterial( parameters ) {
        Material.call( this );
        this.type = 'MeshNormalMaterial';
        this.bumpMap = null;
        this.bumpScale = 1;
        this.normalMap = null;
        this.normalMapType = TangentSpaceNormalMap;
        this.normalScale = new Vector2( 1, 1 );
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.fog = false;
        this.skinning = false;
        this.morphTargets = false;
        this.morphNormals = false;
        this.setValues( parameters );
    }
    MeshNormalMaterial.prototype = Object.create( Material.prototype );
    MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;
    MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
    MeshNormalMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.bumpMap = source.bumpMap;
        this.bumpScale = source.bumpScale;
        this.normalMap = source.normalMap;
        this.normalMapType = source.normalMapType;
        this.normalScale.copy( source.normalScale );
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        return this;
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * opacity: ,
     *
     * map: new THREE.Texture( ),
     *
     * lightMap: new THREE.Texture( ),
     * lightMapIntensity:
     *
     * aoMap: new THREE.Texture( ),
     * aoMapIntensity:
     *
     * emissive: ,
     * emissiveIntensity:
     * emissiveMap: new THREE.Texture( ),
     *
     * specularMap: new THREE.Texture( ),
     *
     * alphaMap: new THREE.Texture( ),
     *
     * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
     * combine: THREE.Multiply,
     * reflectivity: ,
     * refractionRatio: ,
     *
     * wireframe: ,
     * wireframeLinewidth: ,
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function MeshLambertMaterial( parameters ) {
        Material.call( this );
        this.type = 'MeshLambertMaterial';
        this.color = new Color( 0xffffff ); // diffuse
        this.map = null;
        this.lightMap = null;
        this.lightMapIntensity = 1.0;
        this.aoMap = null;
        this.aoMapIntensity = 1.0;
        this.emissive = new Color( 0x000000 );
        this.emissiveIntensity = 1.0;
        this.emissiveMap = null;
        this.specularMap = null;
        this.alphaMap = null;
        this.envMap = null;
        this.combine = MultiplyOperation;
        this.reflectivity = 1;
        this.refractionRatio = 0.98;
        this.wireframe = false;
        this.wireframeLinewidth = 1;
        this.wireframeLinecap = 'round';
        this.wireframeLinejoin = 'round';
        this.skinning = false;
        this.morphTargets = false;
        this.morphNormals = false;
        this.setValues( parameters );
    }
    MeshLambertMaterial.prototype = Object.create( Material.prototype );
    MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;
    MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
    MeshLambertMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.color.copy( source.color );
        this.map = source.map;
        this.lightMap = source.lightMap;
        this.lightMapIntensity = source.lightMapIntensity;
        this.aoMap = source.aoMap;
        this.aoMapIntensity = source.aoMapIntensity;
        this.emissive.copy( source.emissive );
        this.emissiveMap = source.emissiveMap;
        this.emissiveIntensity = source.emissiveIntensity;
        this.specularMap = source.specularMap;
        this.alphaMap = source.alphaMap;
        this.envMap = source.envMap;
        this.combine = source.combine;
        this.reflectivity = source.reflectivity;
        this.refractionRatio = source.refractionRatio;
        this.wireframe = source.wireframe;
        this.wireframeLinewidth = source.wireframeLinewidth;
        this.wireframeLinecap = source.wireframeLinecap;
        this.wireframeLinejoin = source.wireframeLinejoin;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        return this;
    };
    /**
     * @author WestLangley / http://github.com/WestLangley
     *
     * parameters = {
     * color: ,
     * opacity: ,
     *
     * matcap: new THREE.Texture( ),
     *
     * map: new THREE.Texture( ),
     *
     * bumpMap: new THREE.Texture( ),
     * bumpScale: ,
     *
     * normalMap: new THREE.Texture( ),
     * normalMapType: THREE.TangentSpaceNormalMap,
     * normalScale: ,
     *
     * displacementMap: new THREE.Texture( ),
     * displacementScale: ,
     * displacementBias: ,
     *
     * alphaMap: new THREE.Texture( ),
     *
     * skinning: ,
     * morphTargets: ,
     * morphNormals:
     * }
     */
    function MeshMatcapMaterial( parameters ) {
        Material.call( this );
        this.defines = { 'MATCAP': '' };
        this.type = 'MeshMatcapMaterial';
        this.color = new Color( 0xffffff ); // diffuse
        this.matcap = null;
        this.map = null;
        this.bumpMap = null;
        this.bumpScale = 1;
        this.normalMap = null;
        this.normalMapType = TangentSpaceNormalMap;
        this.normalScale = new Vector2( 1, 1 );
        this.displacementMap = null;
        this.displacementScale = 1;
        this.displacementBias = 0;
        this.alphaMap = null;
        this.skinning = false;
        this.morphTargets = false;
        this.morphNormals = false;
        this.setValues( parameters );
    }
    MeshMatcapMaterial.prototype = Object.create( Material.prototype );
    MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial;
    MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
    MeshMatcapMaterial.prototype.copy = function ( source ) {
        Material.prototype.copy.call( this, source );
        this.defines = { 'MATCAP': '' };
        this.color.copy( source.color );
        this.matcap = source.matcap;
        this.map = source.map;
        this.bumpMap = source.bumpMap;
        this.bumpScale = source.bumpScale;
        this.normalMap = source.normalMap;
        this.normalMapType = source.normalMapType;
        this.normalScale.copy( source.normalScale );
        this.displacementMap = source.displacementMap;
        this.displacementScale = source.displacementScale;
        this.displacementBias = source.displacementBias;
        this.alphaMap = source.alphaMap;
        this.skinning = source.skinning;
        this.morphTargets = source.morphTargets;
        this.morphNormals = source.morphNormals;
        return this;
    };
    /**
     * @author alteredq / http://alteredqualia.com/
     *
     * parameters = {
     * color: ,
     * opacity: ,
     *
     * linewidth: ,
     *
     * scale: ,
     * dashSize: ,
     * gapSize:
     * }
     */
    function LineDashedMaterial( parameters ) {
        LineBasicMaterial.call( this );
        this.type = 'LineDashedMaterial';
        this.scale = 1;
        this.dashSize = 3;
        this.gapSize = 1;
        this.setValues( parameters );
    }
    LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype );
    LineDashedMaterial.prototype.constructor = LineDashedMaterial;
    LineDashedMaterial.prototype.isLineDashedMaterial = true;
    LineDashedMaterial.prototype.copy = function ( source ) {
        LineBasicMaterial.prototype.copy.call( this, source );
        this.scale = source.scale;
        this.dashSize = source.dashSize;
        this.gapSize = source.gapSize;
        return this;
    };
    var Materials = /*#__PURE__*/Object.freeze({
        __proto__: null,
        ShadowMaterial: ShadowMaterial,
        SpriteMaterial: SpriteMaterial,
        RawShaderMaterial: RawShaderMaterial,
        ShaderMaterial: ShaderMaterial,
        PointsMaterial: PointsMaterial,
        MeshPhysicalMaterial: MeshPhysicalMaterial,
        MeshStandardMaterial: MeshStandardMaterial,
        MeshPhongMaterial: MeshPhongMaterial,
        MeshToonMaterial: MeshToonMaterial,
        MeshNormalMaterial: MeshNormalMaterial,
        MeshLambertMaterial: MeshLambertMaterial,
        MeshDepthMaterial: MeshDepthMaterial,
        MeshDistanceMaterial: MeshDistanceMaterial,
        MeshBasicMaterial: MeshBasicMaterial,
        MeshMatcapMaterial: MeshMatcapMaterial,
        LineDashedMaterial: LineDashedMaterial,
        LineBasicMaterial: LineBasicMaterial,
        Material: Material
    });
    /**
     * @author tschw
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     */
    var AnimationUtils = {
        // same as Array.prototype.slice, but also works on typed arrays
        arraySlice: function ( array, from, to ) {
            if ( AnimationUtils.isTypedArray( array ) ) {
                // in ios9 array.subarray(from, undefined) will return empty array
                // but array.subarray(from) or array.subarray(from, len) is correct
                return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );
            }
            return array.slice( from, to );
        },
        // converts an array to a specific type
        convertArray: function ( array, type, forceClone ) {
            if ( ! array || // let 'undefined' and 'null' pass
                ! forceClone && array.constructor === type ) { return array; }
            if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
                return new type( array ); // create typed array
            }
            return Array.prototype.slice.call( array ); // create Array
        },
        isTypedArray: function ( object ) {
            return ArrayBuffer.isView( object ) &&
                ! ( object instanceof DataView );
        },
        // returns an array by which times and values can be sorted
        getKeyframeOrder: function ( times ) {
            function compareTime( i, j ) {
                return times[ i ] - times[ j ];
            }
            var n = times.length;
            var result = new Array( n );
            for ( var i = 0; i !== n; ++ i ) { result[ i ] = i; }
            result.sort( compareTime );
            return result;
        },
        // uses the array previously returned by 'getKeyframeOrder' to sort data
        sortedArray: function ( values, stride, order ) {
            var nValues = values.length;
            var result = new values.constructor( nValues );
            for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
                var srcOffset = order[ i ] * stride;
                for ( var j = 0; j !== stride; ++ j ) {
                    result[ dstOffset ++ ] = values[ srcOffset + j ];
                }
            }
            return result;
        },
        // function for parsing AOS keyframe formats
        flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {
            var i = 1, key = jsonKeys[ 0 ];
            while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
                key = jsonKeys[ i ++ ];
            }
            if ( key === undefined ) { return; } // no data
            var value = key[ valuePropertyName ];
            if ( value === undefined ) { return; } // no data
            if ( Array.isArray( value ) ) {
                do {
                    value = key[ valuePropertyName ];
                    if ( value !== undefined ) {
                        times.push( key.time );
                        values.push.apply( values, value ); // push all elements
                    }
                    key = jsonKeys[ i ++ ];
                } while ( key !== undefined );
            } else if ( value.toArray !== undefined ) {
                // ...assume THREE.Math-ish
                do {
                    value = key[ valuePropertyName ];
                    if ( value !== undefined ) {
                        times.push( key.time );
                        value.toArray( values, values.length );
                    }
                    key = jsonKeys[ i ++ ];
                } while ( key !== undefined );
            } else {
                // otherwise push as-is
                do {
                    value = key[ valuePropertyName ];
                    if ( value !== undefined ) {
                        times.push( key.time );
                        values.push( value );
                    }
                    key = jsonKeys[ i ++ ];
                } while ( key !== undefined );
            }
        },
        subclip: function ( sourceClip, name, startFrame, endFrame, fps ) {
            fps = fps || 30;
            var clip = sourceClip.clone();
            clip.name = name;
            var tracks = [];
            for ( var i = 0; i < clip.tracks.length; ++ i ) {
                var track = clip.tracks[ i ];
                var valueSize = track.getValueSize();
                var times = [];
                var values = [];
                for ( var j = 0; j < track.times.length; ++ j ) {
                    var frame = track.times[ j ] * fps;
                    if ( frame < startFrame || frame >= endFrame ) { continue; }
                    times.push( track.times[ j ] );
                    for ( var k = 0; k < valueSize; ++ k ) {
                        values.push( track.values[ j * valueSize + k ] );
                    }
                }
                if ( times.length === 0 ) { continue; }
                track.times = AnimationUtils.convertArray( times, track.times.constructor );
                track.values = AnimationUtils.convertArray( values, track.values.constructor );
                tracks.push( track );
            }
            clip.tracks = tracks;
            // find minimum .times value across all tracks in the trimmed clip
            var minStartTime = Infinity;
            for ( var i = 0; i < clip.tracks.length; ++ i ) {
                if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) {
                    minStartTime = clip.tracks[ i ].times[ 0 ];
                }
            }
            // shift all tracks such that clip begins at t=0
            for ( var i = 0; i < clip.tracks.length; ++ i ) {
                clip.tracks[ i ].shift( - 1 * minStartTime );
            }
            clip.resetDuration();
            return clip;
        },
        makeClipAdditive: function ( targetClip, referenceFrame, referenceClip, fps ) {
            if ( referenceFrame === undefined ) { referenceFrame = 0; }
            if ( referenceClip === undefined ) { referenceClip = targetClip; }
            if ( fps === undefined || fps <= 0 ) { fps = 30; }
            var numTracks = targetClip.tracks.length;
            var referenceTime = referenceFrame / fps;
            // Make each track's values relative to the values at the reference frame
            for ( var i = 0; i < numTracks; ++ i ) {
                var referenceTrack = referenceClip.tracks[ i ];
                var referenceTrackType = referenceTrack.ValueTypeName;
                // Skip this track if it's non-numeric
                if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) { continue; }
                // Find the track in the target clip whose name and type matches the reference track
                var targetTrack = targetClip.tracks.find( function ( track ) {
                    return track.name === referenceTrack.name
                    && track.ValueTypeName === referenceTrackType;
                } );
                if ( targetTrack === undefined ) { continue; }
                var valueSize = referenceTrack.getValueSize();
                var lastIndex = referenceTrack.times.length - 1;
                var referenceValue;
                // Find the value to subtract out of the track
                if ( referenceTime <= referenceTrack.times[ 0 ] ) {
                    // Reference frame is earlier than the first keyframe, so just use the first keyframe
                    referenceValue = AnimationUtils.arraySlice( referenceTrack.values, 0, referenceTrack.valueSize );
                } else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) {
                    // Reference frame is after the last keyframe, so just use the last keyframe
                    var startIndex = lastIndex * valueSize;
                    referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex );
                } else {
                    // Interpolate to the reference value
                    var interpolant = referenceTrack.createInterpolant();
                    interpolant.evaluate( referenceTime );
                    referenceValue = interpolant.resultBuffer;
                }
                // Conjugate the quaternion
                if ( referenceTrackType === 'quaternion' ) {
                    var referenceQuat = new Quaternion(
                        referenceValue[ 0 ],
                        referenceValue[ 1 ],
                        referenceValue[ 2 ],
                        referenceValue[ 3 ]
                    ).normalize().conjugate();
                    referenceQuat.toArray( referenceValue );
                }
                // Subtract the reference value from all of the track values
                var numTimes = targetTrack.times.length;
                for ( var j = 0; j < numTimes; ++ j ) {
                    var valueStart = j * valueSize;
                    if ( referenceTrackType === 'quaternion' ) {
                        // Multiply the conjugate for quaternion track types
                        Quaternion.multiplyQuaternionsFlat(
                            targetTrack.values,
                            valueStart,
                            referenceValue,
                            0,
                            targetTrack.values,
                            valueStart
                        );
                    } else {
                        // Subtract each value for all other numeric track types
                        for ( var k = 0; k < valueSize; ++ k ) {
                            targetTrack.values[ valueStart + k ] -= referenceValue[ k ];
                        }
                    }
                }
            }
            targetClip.blendMode = AdditiveAnimationBlendMode;
            return targetClip;
        }
    };
    /**
     * Abstract base class of interpolants over parametric samples.
     *
     * The parameter domain is one dimensional, typically the time or a path
     * along a curve defined by the data.
     *
     * The sample values can have any dimensionality and derived classes may
     * apply special interpretations to the data.
     *
     * This class provides the interval seek in a Template Method, deferring
     * the actual interpolation to derived classes.
     *
     * Time complexity is O(1) for linear access crossing at most two points
     * and O(log N) for random access, where N is the number of positions.
     *
     * References:
     *
     *         http://www.oodesign.com/template-method-pattern.html
     *
     * @author tschw
     */
    function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
        this.parameterPositions = parameterPositions;
        this._cachedIndex = 0;
        this.resultBuffer = resultBuffer !== undefined ?
            resultBuffer : new sampleValues.constructor( sampleSize );
        this.sampleValues = sampleValues;
        this.valueSize = sampleSize;
    }
    Object.assign( Interpolant.prototype, {
        evaluate: function ( t ) {
            var pp = this.parameterPositions,
                i1 = this._cachedIndex,
                t1 = pp[ i1 ],
                t0 = pp[ i1 - 1 ];
            validate_interval: {
                seek: {
                    var right;
                    linear_scan: {
                        //- See http://jsperf.com/comparison-to-undefined/3
                        //- slower code:
                        //-
                        //-                 if ( t >= t1 || t1 === undefined ) {
                        forward_scan: if ( ! ( t < t1 ) ) {
                            for ( var giveUpAt = i1 + 2; ; ) {
                                if ( t1 === undefined ) {
                                    if ( t < t0 ) { break forward_scan; }
                                    // after end
                                    i1 = pp.length;
                                    this._cachedIndex = i1;
                                    return this.afterEnd_( i1 - 1, t, t0 );
                                }
                                if ( i1 === giveUpAt ) { break; } // this loop
                                t0 = t1;
                                t1 = pp[ ++ i1 ];
                                if ( t < t1 ) {
                                    // we have arrived at the sought interval
                                    break seek;
                                }
                            }
                            // prepare binary search on the right side of the index
                            right = pp.length;
                            break linear_scan;
                        }
                        //- slower code:
                        //-                    if ( t < t0 || t0 === undefined ) {
                        if ( ! ( t >= t0 ) ) {
                            // looping?
                            var t1global = pp[ 1 ];
                            if ( t < t1global ) {
                                i1 = 2; // + 1, using the scan for the details
                                t0 = t1global;
                            }
                            // linear reverse scan
                            for ( var giveUpAt = i1 - 2; ; ) {
                                if ( t0 === undefined ) {
                                    // before start
                                    this._cachedIndex = 0;
                                    return this.beforeStart_( 0, t, t1 );
                                }
                                if ( i1 === giveUpAt ) { break; } // this loop
                                t1 = t0;
                                t0 = pp[ -- i1 - 1 ];
                                if ( t >= t0 ) {
                                    // we have arrived at the sought interval
                                    break seek;
                                }
                            }
                            // prepare binary search on the left side of the index
                            right = i1;
                            i1 = 0;
                            break linear_scan;
                        }
                        // the interval is valid
                        break validate_interval;
                    } // linear scan
                    // binary search
                    while ( i1 < right ) {
                        var mid = ( i1 + right ) >>> 1;
                        if ( t < pp[ mid ] ) {
                            right = mid;
                        } else {
                            i1 = mid + 1;
                        }
                    }
                    t1 = pp[ i1 ];
                    t0 = pp[ i1 - 1 ];
                    // check boundary cases, again
                    if ( t0 === undefined ) {
                        this._cachedIndex = 0;
                        return this.beforeStart_( 0, t, t1 );
                    }
                    if ( t1 === undefined ) {
                        i1 = pp.length;
                        this._cachedIndex = i1;
                        return this.afterEnd_( i1 - 1, t0, t );
                    }
                } // seek
                this._cachedIndex = i1;
                this.intervalChanged_( i1, t0, t1 );
            } // validate_interval
            return this.interpolate_( i1, t0, t, t1 );
        },
        settings: null, // optional, subclass-specific settings structure
        // Note: The indirection allows central control of many interpolants.
        // --- Protected interface
        DefaultSettings_: {},
        getSettings_: function () {
            return this.settings || this.DefaultSettings_;
        },
        copySampleValue_: function ( index ) {
            // copies a sample value to the result buffer
            var result = this.resultBuffer,
                values = this.sampleValues,
                stride = this.valueSize,
                offset = index * stride;
            for ( var i = 0; i !== stride; ++ i ) {
                result[ i ] = values[ offset + i ];
            }
            return result;
        },
        // Template methods for derived classes:
        interpolate_: function ( /* i1, t0, t, t1 */ ) {
            throw new Error( 'call to abstract method' );
            // implementations shall return this.resultBuffer
        },
        intervalChanged_: function ( /* i1, t0, t1 */ ) {
            // empty
        }
    } );
    // DECLARE ALIAS AFTER assign prototype
    Object.assign( Interpolant.prototype, {
        //( 0, t, t0 ), returns this.resultBuffer
        beforeStart_: Interpolant.prototype.copySampleValue_,
        //( N-1, tN-1, t ), returns this.resultBuffer
        afterEnd_: Interpolant.prototype.copySampleValue_,
    } );
    /**
     * Fast and simple cubic spline interpolant.
     *
     * It was derived from a Hermitian construction setting the first derivative
     * at each sample position to the linear slope between neighboring positions
     * over their parameter interval.
     *
     * @author tschw
     */
    function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
        Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
        this._weightPrev = - 0;
        this._offsetPrev = - 0;
        this._weightNext = - 0;
        this._offsetNext = - 0;
    }
    CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
        constructor: CubicInterpolant,
        DefaultSettings_: {
            endingStart: ZeroCurvatureEnding,
            endingEnd: ZeroCurvatureEnding
        },
        intervalChanged_: function ( i1, t0, t1 ) {
            var pp = this.parameterPositions,
                iPrev = i1 - 2,
                iNext = i1 + 1,
                tPrev = pp[ iPrev ],
                tNext = pp[ iNext ];
            if ( tPrev === undefined ) {
                switch ( this.getSettings_().endingStart ) {
                    case ZeroSlopeEnding:
                        // f'(t0) = 0
                        iPrev = i1;
                        tPrev = 2 * t0 - t1;
                        break;
                    case WrapAroundEnding:
                        // use the other end of the curve
                        iPrev = pp.length - 2;
                        tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
                        break;
                    default: // ZeroCurvatureEnding
                        // f''(t0) = 0 a.k.a. Natural Spline
                        iPrev = i1;
                        tPrev = t1;
                }
            }
            if ( tNext === undefined ) {
                switch ( this.getSettings_().endingEnd ) {
                    case ZeroSlopeEnding:
                        // f'(tN) = 0
                        iNext = i1;
                        tNext = 2 * t1 - t0;
                        break;
                    case WrapAroundEnding:
                        // use the other end of the curve
                        iNext = 1;
                        tNext = t1 + pp[ 1 ] - pp[ 0 ];
                        break;
                    default: // ZeroCurvatureEnding
                        // f''(tN) = 0, a.k.a. Natural Spline
                        iNext = i1 - 1;
                        tNext = t0;
                }
            }
            var halfDt = ( t1 - t0 ) * 0.5,
                stride = this.valueSize;
            this._weightPrev = halfDt / ( t0 - tPrev );
            this._weightNext = halfDt / ( tNext - t1 );
            this._offsetPrev = iPrev * stride;
            this._offsetNext = iNext * stride;
        },
        interpolate_: function ( i1, t0, t, t1 ) {
            var result = this.resultBuffer,
                values = this.sampleValues,
                stride = this.valueSize,
                o1 = i1 * stride,        o0 = o1 - stride,
                oP = this._offsetPrev,     oN = this._offsetNext,
                wP = this._weightPrev,    wN = this._weightNext,
                p = ( t - t0 ) / ( t1 - t0 ),
                pp = p * p,
                ppp = pp * p;
            // evaluate polynomials
            var sP = - wP * ppp + 2 * wP * pp - wP * p;
            var s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1;
            var s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
            var sN = wN * ppp - wN * pp;
            // combine data linearly
            for ( var i = 0; i !== stride; ++ i ) {
                result[ i ] =
                        sP * values[ oP + i ] +
                        s0 * values[ o0 + i ] +
                        s1 * values[ o1 + i ] +
                        sN * values[ oN + i ];
            }
            return result;
        }
    } );
    /**
     * @author tschw
     */
    function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
        Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    }
    LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
        constructor: LinearInterpolant,
        interpolate_: function ( i1, t0, t, t1 ) {
            var result = this.resultBuffer,
                values = this.sampleValues,
                stride = this.valueSize,
                offset1 = i1 * stride,
                offset0 = offset1 - stride,
                weight1 = ( t - t0 ) / ( t1 - t0 ),
                weight0 = 1 - weight1;
            for ( var i = 0; i !== stride; ++ i ) {
                result[ i ] =
                        values[ offset0 + i ] * weight0 +
                        values[ offset1 + i ] * weight1;
            }
            return result;
        }
    } );
    /**
     *
     * Interpolant that evaluates to the sample value at the position preceeding
     * the parameter.
     *
     * @author tschw
     */
    function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
        Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    }
    DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
        constructor: DiscreteInterpolant,
        interpolate_: function ( i1 /*, t0, t, t1 */ ) {
            return this.copySampleValue_( i1 - 1 );
        }
    } );
    /**
     *
     * A timed sequence of keyframes for a specific property.
     *
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function KeyframeTrack( name, times, values, interpolation ) {
        if ( name === undefined ) { throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); }
        if ( times === undefined || times.length === 0 ) { throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); }
        this.name = name;
        this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
        this.values = AnimationUtils.convertArray( values, this.ValueBufferType );
        this.setInterpolation( interpolation || this.DefaultInterpolation );
    }
    // Static methods
    Object.assign( KeyframeTrack, {
        // Serialization (in static context, because of constructor invocation
        // and automatic invocation of .toJSON):
        toJSON: function ( track ) {
            var trackType = track.constructor;
            var json;
            // derived classes can define a static toJSON method
            if ( trackType.toJSON !== undefined ) {
                json = trackType.toJSON( track );
            } else {
                // by default, we assume the data can be serialized as-is
                json = {
                    'name': track.name,
                    'times': AnimationUtils.convertArray( track.times, Array ),
                    'values': AnimationUtils.convertArray( track.values, Array )
                };
                var interpolation = track.getInterpolation();
                if ( interpolation !== track.DefaultInterpolation ) {
                    json.interpolation = interpolation;
                }
            }
            json.type = track.ValueTypeName; // mandatory
            return json;
        }
    } );
    Object.assign( KeyframeTrack.prototype, {
        constructor: KeyframeTrack,
        TimeBufferType: Float32Array,
        ValueBufferType: Float32Array,
        DefaultInterpolation: InterpolateLinear,
        InterpolantFactoryMethodDiscrete: function ( result ) {
            return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );
        },
        InterpolantFactoryMethodLinear: function ( result ) {
            return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );
        },
        InterpolantFactoryMethodSmooth: function ( result ) {
            return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );
        },
        setInterpolation: function ( interpolation ) {
            var factoryMethod;
            switch ( interpolation ) {
                case InterpolateDiscrete:
                    factoryMethod = this.InterpolantFactoryMethodDiscrete;
                    break;
                case InterpolateLinear:
                    factoryMethod = this.InterpolantFactoryMethodLinear;
                    break;
                case InterpolateSmooth:
                    factoryMethod = this.InterpolantFactoryMethodSmooth;
                    break;
            }
            if ( factoryMethod === undefined ) {
                var message = "unsupported interpolation for " +
                    this.ValueTypeName + " keyframe track named " + this.name;
                if ( this.createInterpolant === undefined ) {
                    // fall back to default, unless the default itself is messed up
                    if ( interpolation !== this.DefaultInterpolation ) {
                        this.setInterpolation( this.DefaultInterpolation );
                    } else {
                        throw new Error( message ); // fatal, in this case
                    }
                }
                console.warn( 'THREE.KeyframeTrack:', message );
                return this;
            }
            this.createInterpolant = factoryMethod;
            return this;
        },
        getInterpolation: function () {
            switch ( this.createInterpolant ) {
                case this.InterpolantFactoryMethodDiscrete:
                    return InterpolateDiscrete;
                case this.InterpolantFactoryMethodLinear:
                    return InterpolateLinear;
                case this.InterpolantFactoryMethodSmooth:
                    return InterpolateSmooth;
            }
        },
        getValueSize: function () {
            return this.values.length / this.times.length;
        },
        // move all keyframes either forwards or backwards in time
        shift: function ( timeOffset ) {
            if ( timeOffset !== 0.0 ) {
                var times = this.times;
                for ( var i = 0, n = times.length; i !== n; ++ i ) {
                    times[ i ] += timeOffset;
                }
            }
            return this;
        },
        // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
        scale: function ( timeScale ) {
            if ( timeScale !== 1.0 ) {
                var times = this.times;
                for ( var i = 0, n = times.length; i !== n; ++ i ) {
                    times[ i ] *= timeScale;
                }
            }
            return this;
        },
        // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
        // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
        trim: function ( startTime, endTime ) {
            var times = this.times,
                nKeys = times.length,
                from = 0,
                to = nKeys - 1;
            while ( from !== nKeys && times[ from ] < startTime ) {
                ++ from;
            }
            while ( to !== - 1 && times[ to ] > endTime ) {
                -- to;
            }
            ++ to; // inclusive -> exclusive bound
            if ( from !== 0 || to !== nKeys ) {
                // empty tracks are forbidden, so keep at least one keyframe
                if ( from >= to ) {
                    to = Math.max( to, 1 );
                    from = to - 1;
                }
                var stride = this.getValueSize();
                this.times = AnimationUtils.arraySlice( times, from, to );
                this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride );
            }
            return this;
        },
        // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
        validate: function () {
            var valid = true;
            var valueSize = this.getValueSize();
            if ( valueSize - Math.floor( valueSize ) !== 0 ) {
                console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this );
                valid = false;
            }
            var times = this.times,
                values = this.values,
                nKeys = times.length;
            if ( nKeys === 0 ) {
                console.error( 'THREE.KeyframeTrack: Track is empty.', this );
                valid = false;
            }
            var prevTime = null;
            for ( var i = 0; i !== nKeys; i ++ ) {
                var currTime = times[ i ];
                if ( typeof currTime === 'number' && isNaN( currTime ) ) {
                    console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime );
                    valid = false;
                    break;
                }
                if ( prevTime !== null && prevTime > currTime ) {
                    console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime );
                    valid = false;
                    break;
                }
                prevTime = currTime;
            }
            if ( values !== undefined ) {
                if ( AnimationUtils.isTypedArray( values ) ) {
                    for ( var i = 0, n = values.length; i !== n; ++ i ) {
                        var value = values[ i ];
                        if ( isNaN( value ) ) {
                            console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value );
                            valid = false;
                            break;
                        }
                    }
                }
            }
            return valid;
        },
        // removes equivalent sequential keys as common in morph target sequences
        // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
        optimize: function () {
            // times or values may be shared with other tracks, so overwriting is unsafe
            var times = AnimationUtils.arraySlice( this.times ),
                values = AnimationUtils.arraySlice( this.values ),
                stride = this.getValueSize(),
                smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
                writeIndex = 1,
                lastIndex = times.length - 1;
            for ( var i = 1; i < lastIndex; ++ i ) {
                var keep = false;
                var time = times[ i ];
                var timeNext = times[ i + 1 ];
                // remove adjacent keyframes scheduled at the same time
                if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
                    if ( ! smoothInterpolation ) {
                        // remove unnecessary keyframes same as their neighbors
                        var offset = i * stride,
                            offsetP = offset - stride,
                            offsetN = offset + stride;
                        for ( var j = 0; j !== stride; ++ j ) {
                            var value = values[ offset + j ];
                            if ( value !== values[ offsetP + j ] ||
                                value !== values[ offsetN + j ] ) {
                                keep = true;
                                break;
                            }
                        }
                    } else {
                        keep = true;
                    }
                }
                // in-place compaction
                if ( keep ) {
                    if ( i !== writeIndex ) {
                        times[ writeIndex ] = times[ i ];
                        var readOffset = i * stride,
                            writeOffset = writeIndex * stride;
                        for ( var j = 0; j !== stride; ++ j ) {
                            values[ writeOffset + j ] = values[ readOffset + j ];
                        }
                    }
                    ++ writeIndex;
                }
            }
            // flush last keyframe (compaction looks ahead)
            if ( lastIndex > 0 ) {
                times[ writeIndex ] = times[ lastIndex ];
                for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {
                    values[ writeOffset + j ] = values[ readOffset + j ];
                }
                ++ writeIndex;
            }
            if ( writeIndex !== times.length ) {
                this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
                this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );
            } else {
                this.times = times;
                this.values = values;
            }
            return this;
        },
        clone: function () {
            var times = AnimationUtils.arraySlice( this.times, 0 );
            var values = AnimationUtils.arraySlice( this.values, 0 );
            var TypedKeyframeTrack = this.constructor;
            var track = new TypedKeyframeTrack( this.name, times, values );
            // Interpolant argument to constructor is not saved, so copy the factory method directly.
            track.createInterpolant = this.createInterpolant;
            return track;
        }
    } );
    /**
     *
     * A Track of Boolean keyframe values.
     *
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function BooleanKeyframeTrack( name, times, values ) {
        KeyframeTrack.call( this, name, times, values );
    }
    BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
        constructor: BooleanKeyframeTrack,
        ValueTypeName: 'bool',
        ValueBufferType: Array,
        DefaultInterpolation: InterpolateDiscrete,
        InterpolantFactoryMethodLinear: undefined,
        InterpolantFactoryMethodSmooth: undefined
        // Note: Actually this track could have a optimized / compressed
        // representation of a single value and a custom interpolant that
        // computes "firstValue ^ isOdd( index )".
    } );
    /**
     *
     * A Track of keyframe values that represent color.
     *
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function ColorKeyframeTrack( name, times, values, interpolation ) {
        KeyframeTrack.call( this, name, times, values, interpolation );
    }
    ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
        constructor: ColorKeyframeTrack,
        ValueTypeName: 'color'
        // ValueBufferType is inherited
        // DefaultInterpolation is inherited
        // Note: Very basic implementation and nothing special yet.
        // However, this is the place for color space parameterization.
    } );
    /**
     *
     * A Track of numeric keyframe values.
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function NumberKeyframeTrack( name, times, values, interpolation ) {
        KeyframeTrack.call( this, name, times, values, interpolation );
    }
    NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
        constructor: NumberKeyframeTrack,
        ValueTypeName: 'number'
        // ValueBufferType is inherited
        // DefaultInterpolation is inherited
    } );
    /**
     * Spherical linear unit quaternion interpolant.
     *
     * @author tschw
     */
    function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
        Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    }
    QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
        constructor: QuaternionLinearInterpolant,
        interpolate_: function ( i1, t0, t, t1 ) {
            var result = this.resultBuffer,
                values = this.sampleValues,
                stride = this.valueSize,
                offset = i1 * stride,
                alpha = ( t - t0 ) / ( t1 - t0 );
            for ( var end = offset + stride; offset !== end; offset += 4 ) {
                Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );
            }
            return result;
        }
    } );
    /**
     *
     * A Track of quaternion keyframe values.
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function QuaternionKeyframeTrack( name, times, values, interpolation ) {
        KeyframeTrack.call( this, name, times, values, interpolation );
    }
    QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
        constructor: QuaternionKeyframeTrack,
        ValueTypeName: 'quaternion',
        // ValueBufferType is inherited
        DefaultInterpolation: InterpolateLinear,
        InterpolantFactoryMethodLinear: function ( result ) {
            return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );
        },
        InterpolantFactoryMethodSmooth: undefined // not yet implemented
    } );
    /**
     *
     * A Track that interpolates Strings
     *
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function StringKeyframeTrack( name, times, values, interpolation ) {
        KeyframeTrack.call( this, name, times, values, interpolation );
    }
    StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
        constructor: StringKeyframeTrack,
        ValueTypeName: 'string',
        ValueBufferType: Array,
        DefaultInterpolation: InterpolateDiscrete,
        InterpolantFactoryMethodLinear: undefined,
        InterpolantFactoryMethodSmooth: undefined
    } );
    /**
     *
     * A Track of vectored keyframe values.
     *
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     * @author tschw
     */
    function VectorKeyframeTrack( name, times, values, interpolation ) {
        KeyframeTrack.call( this, name, times, values, interpolation );
    }
    VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {
        constructor: VectorKeyframeTrack,
        ValueTypeName: 'vector'
        // ValueBufferType is inherited
        // DefaultInterpolation is inherited
    } );
    /**
     *
     * Reusable set of Tracks that represent an animation.
     *
     * @author Ben Houston / http://clara.io/
     * @author David Sarno / http://lighthaus.us/
     */
    function AnimationClip( name, duration, tracks, blendMode ) {
        this.name = name;
        this.tracks = tracks;
        this.duration = ( duration !== undefined ) ? duration : - 1;
        this.blendMode = ( blendMode !== undefined ) ? blendMode : NormalAnimationBlendMode;
        this.uuid = MathUtils.generateUUID();
        // this means it should figure out its duration by scanning the tracks
        if ( this.duration < 0 ) {
            this.resetDuration();
        }
    }
    function getTrackTypeForValueTypeName( typeName ) {
        switch ( typeName.toLowerCase() ) {
            case 'scalar':
            case 'double':
            case 'float':
            case 'number':
            case 'integer':
                return NumberKeyframeTrack;
            case 'vector':
            case 'vector2':
            case 'vector3':
            case 'vector4':
                return VectorKeyframeTrack;
            case 'color':
                return ColorKeyframeTrack;
            case 'quaternion':
                return QuaternionKeyframeTrack;
            case 'bool':
            case 'boolean':
                return BooleanKeyframeTrack;
            case 'string':
                return StringKeyframeTrack;
        }
        throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );
    }
    function parseKeyframeTrack( json ) {
        if ( json.type === undefined ) {
            throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );
        }
        var trackType = getTrackTypeForValueTypeName( json.type );
        if ( json.times === undefined ) {
            var times = [], values = [];
            AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
            json.times = times;
            json.values = values;
        }
        // derived classes can define a static parse method
        if ( trackType.parse !== undefined ) {
            return trackType.parse( json );
        } else {
            // by default, we assume a constructor compatible with the base
            return new trackType( json.name, json.times, json.values, json.interpolation );
        }
    }
    Object.assign( AnimationClip, {
        parse: function ( json ) {
            var tracks = [],
                jsonTracks = json.tracks,
                frameTime = 1.0 / ( json.fps || 1.0 );
            for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {
                tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) );
            }
            return new AnimationClip( json.name, json.duration, tracks, json.blendMode );
        },
        toJSON: function ( clip ) {
            var tracks = [],
                clipTracks = clip.tracks;
            var json = {
                'name': clip.name,
                'duration': clip.duration,
                'tracks': tracks,
                'uuid': clip.uuid,
                'blendMode': clip.blendMode
            };
            for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {
                tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );
            }
            return json;
        },
        CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {
            var numMorphTargets = morphTargetSequence.length;
            var tracks = [];
            for ( var i = 0; i < numMorphTargets; i ++ ) {
                var times = [];
                var values = [];
                times.push(
                    ( i + numMorphTargets - 1 ) % numMorphTargets,
                    i,
                    ( i + 1 ) % numMorphTargets );
                values.push( 0, 1, 0 );
                var order = AnimationUtils.getKeyframeOrder( times );
                times = AnimationUtils.sortedArray( times, 1, order );
                values = AnimationUtils.sortedArray( values, 1, order );
                // if there is a key at the first frame, duplicate it as the
                // last frame as well for perfect loop.
                if ( ! noLoop && times[ 0 ] === 0 ) {
                    times.push( numMorphTargets );
                    values.push( values[ 0 ] );
                }
                tracks.push(
                    new NumberKeyframeTrack(
                        '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
                        times, values
                    ).scale( 1.0 / fps ) );
            }
            return new AnimationClip( name, - 1, tracks );
        },
        findByName: function ( objectOrClipArray, name ) {
            var clipArray = objectOrClipArray;
            if ( ! Array.isArray( objectOrClipArray ) ) {
                var o = objectOrClipArray;
                clipArray = o.geometry && o.geometry.animations || o.animations;
            }
            for ( var i = 0; i < clipArray.length; i ++ ) {
                if ( clipArray[ i ].name === name ) {
                    return clipArray[ i ];
                }
            }
            return null;
        },
        CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {
            var animationToMorphTargets = {};
            // tested with https://regex101.com/ on trick sequences
            // such flamingo_flyA_003, flamingo_run1_003, crdeath0059
            var pattern = /^([\w-]*?)([\d]+)$/;
            // sort morph target names into animation groups based
            // patterns like Walk_001, Walk_002, Run_001, Run_002
            for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {
                var morphTarget = morphTargets[ i ];
                var parts = morphTarget.name.match( pattern );
                if ( parts && parts.length > 1 ) {
                    var name = parts[ 1 ];
                    var animationMorphTargets = animationToMorphTargets[ name ];
                    if ( ! animationMorphTargets ) {
                        animationToMorphTargets[ name ] = animationMorphTargets = [];
                    }
                    animationMorphTargets.push( morphTarget );
                }
            }
            var clips = [];
            for ( var name in animationToMorphTargets ) {
                clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
            }
            return clips;
        },
        // parse the animation.hierarchy format
        parseAnimation: function ( animation, bones ) {
            if ( ! animation ) {
                console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
                return null;
            }
            var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {
                // only return track if there are actually keys.
                if ( animationKeys.length !== 0 ) {
                    var times = [];
                    var values = [];
                    AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );
                    // empty keys are filtered out, so check again
                    if ( times.length !== 0 ) {
                        destTracks.push( new trackType( trackName, times, values ) );
                    }
                }
            };
            var tracks = [];
            var clipName = animation.name || 'default';
            // automatic length determination in AnimationClip.
            var duration = animation.length || - 1;
            var fps = animation.fps || 30;
            var blendMode = animation.blendMode;
            var hierarchyTracks = animation.hierarchy || [];
            for ( var h = 0; h < hierarchyTracks.length; h ++ ) {
                var animationKeys = hierarchyTracks[ h ].keys;
                // skip empty tracks
                if ( ! animationKeys || animationKeys.length === 0 ) { continue; }
                // process morph targets
                if ( animationKeys[ 0 ].morphTargets ) {
                    // figure out all morph targets used in this track
                    var morphTargetNames = {};
                    for ( var k = 0; k < animationKeys.length; k ++ ) {
                        if ( animationKeys[ k ].morphTargets ) {
                            for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {
                                morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;
                            }
                        }
                    }
                    // create a track for each morph target with all zero
                    // morphTargetInfluences except for the keys in which
                    // the morphTarget is named.
                    for ( var morphTargetName in morphTargetNames ) {
                        var times = [];
                        var values = [];
                        for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {
                            var animationKey = animationKeys[ k ];
                            times.push( animationKey.time );
                            values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );
                        }
                        tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
                    }
                    duration = morphTargetNames.length * ( fps || 1.0 );
                } else {
                    // ...assume skeletal animation
                    var boneName = '.bones[' + bones[ h ].name + ']';
                    addNonemptyTrack(
                        VectorKeyframeTrack, boneName + '.position',
                        animationKeys, 'pos', tracks );
                    addNonemptyTrack(
                        QuaternionKeyframeTrack, boneName + '.quaternion',
                        animationKeys, 'rot', tracks );
                    addNonemptyTrack(
                        VectorKeyframeTrack, boneName + '.scale',
                        animationKeys, 'scl', tracks );
                }
            }
            if ( tracks.length === 0 ) {
                return null;
            }
            var clip = new AnimationClip( clipName, duration, tracks, blendMode );
            return clip;
        }
    } );
    Object.assign( AnimationClip.prototype, {
        resetDuration: function () {
            var tracks = this.tracks, duration = 0;
            for ( var i = 0, n = tracks.length; i !== n; ++ i ) {
                var track = this.tracks[ i ];
                duration = Math.max( duration, track.times[ track.times.length - 1 ] );
            }
            this.duration = duration;
            return this;
        },
        trim: function () {
            for ( var i = 0; i < this.tracks.length; i ++ ) {
                this.tracks[ i ].trim( 0, this.duration );
            }
            return this;
        },
        validate: function () {
            var valid = true;
            for ( var i = 0; i < this.tracks.length; i ++ ) {
                valid = valid && this.tracks[ i ].validate();
            }
            return valid;
        },
        optimize: function () {
            for ( var i = 0; i < this.tracks.length; i ++ ) {
                this.tracks[ i ].optimize();
            }
            return this;
        },
        clone: function () {
            var tracks = [];
            for ( var i = 0; i < this.tracks.length; i ++ ) {
                tracks.push( this.tracks[ i ].clone() );
            }
            return new AnimationClip( this.name, this.duration, tracks, this.blendMode );
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var Cache = {
        enabled: false,
        files: {},
        add: function ( key, file ) {
            if ( this.enabled === false ) { return; }
            // console.log( 'THREE.Cache', 'Adding key:', key );
            this.files[ key ] = file;
        },
        get: function ( key ) {
            if ( this.enabled === false ) { return; }
            // console.log( 'THREE.Cache', 'Checking key:', key );
            return this.files[ key ];
        },
        remove: function ( key ) {
            delete this.files[ key ];
        },
        clear: function () {
            this.files = {};
        }
    };
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function LoadingManager( onLoad, onProgress, onError ) {
        var scope = this;
        var isLoading = false;
        var itemsLoaded = 0;
        var itemsTotal = 0;
        var urlModifier = undefined;
        var handlers = [];
        // Refer to #5689 for the reason why we don't set .onStart
        // in the constructor
        this.onStart = undefined;
        this.onLoad = onLoad;
        this.onProgress = onProgress;
        this.onError = onError;
        this.itemStart = function ( url ) {
            itemsTotal ++;
            if ( isLoading === false ) {
                if ( scope.onStart !== undefined ) {
                    scope.onStart( url, itemsLoaded, itemsTotal );
                }
            }
            isLoading = true;
        };
        this.itemEnd = function ( url ) {
            itemsLoaded ++;
            if ( scope.onProgress !== undefined ) {
                scope.onProgress( url, itemsLoaded, itemsTotal );
            }
            if ( itemsLoaded === itemsTotal ) {
                isLoading = false;
                if ( scope.onLoad !== undefined ) {
                    scope.onLoad();
                }
            }
        };
        this.itemError = function ( url ) {
            if ( scope.onError !== undefined ) {
                scope.onError( url );
            }
        };
        this.resolveURL = function ( url ) {
            if ( urlModifier ) {
                return urlModifier( url );
            }
            return url;
        };
        this.setURLModifier = function ( transform ) {
            urlModifier = transform;
            return this;
        };
        this.addHandler = function ( regex, loader ) {
            handlers.push( regex, loader );
            return this;
        };
        this.removeHandler = function ( regex ) {
            var index = handlers.indexOf( regex );
            if ( index !== - 1 ) {
                handlers.splice( index, 2 );
            }
            return this;
        };
        this.getHandler = function ( file ) {
            for ( var i = 0, l = handlers.length; i < l; i += 2 ) {
                var regex = handlers[ i ];
                var loader = handlers[ i + 1 ];
                if ( regex.global ) { regex.lastIndex = 0; } // see #17920
                if ( regex.test( file ) ) {
                    return loader;
                }
            }
            return null;
        };
    }
    var DefaultLoadingManager = new LoadingManager();
    /**
     * @author alteredq / http://alteredqualia.com/
     */
    function Loader( manager ) {
        this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
        this.crossOrigin = 'anonymous';
        this.path = '';
        this.resourcePath = '';
    }
    Object.assign( Loader.prototype, {
        load: function ( /* url, onLoad, onProgress, onError */ ) {},
        loadAsync: function ( url, onProgress ) {
            var scope = this;
            return new Promise( function ( resolve, reject ) {
                scope.load( url, resolve, onProgress, reject );
            } );
        },
        parse: function ( /* data */ ) {},
        setCrossOrigin: function ( crossOrigin ) {
            this.crossOrigin = crossOrigin;
            return this;
        },
        setPath: function ( path ) {
            this.path = path;
            return this;
        },
        setResourcePath: function ( resourcePath ) {
            this.resourcePath = resourcePath;
            return this;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    var loading = {};
    function FileLoader( manager ) {
        Loader.call( this, manager );
    }
    FileLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: FileLoader,
        load: function ( url, onLoad, onProgress, onError ) {
            if ( url === undefined ) { url = ''; }
            if ( this.path !== undefined ) { url = this.path + url; }
            url = this.manager.resolveURL( url );
            var scope = this;
            var cached = Cache.get( url );
            if ( cached !== undefined ) {
                scope.manager.itemStart( url );
                setTimeout( function () {
                    if ( onLoad ) { onLoad( cached ); }
                    scope.manager.itemEnd( url );
                }, 0 );
                return cached;
            }
            // Check if request is duplicate
            if ( loading[ url ] !== undefined ) {
                loading[ url ].push( {
                    onLoad: onLoad,
                    onProgress: onProgress,
                    onError: onError
                } );
                return;
            }
            // Check for data: URI
            var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
            var dataUriRegexResult = url.match( dataUriRegex );
            // Safari can not handle Data URIs through XMLHttpRequest so process manually
            if ( dataUriRegexResult ) {
                var mimeType = dataUriRegexResult[ 1 ];
                var isBase64 = !! dataUriRegexResult[ 2 ];
                var data = dataUriRegexResult[ 3 ];
                data = decodeURIComponent( data );
                if ( isBase64 ) { data = atob( data ); }
                try {
                    var response;
                    var responseType = ( this.responseType || '' ).toLowerCase();
                    switch ( responseType ) {
                        case 'arraybuffer':
                        case 'blob':
                            var view = new Uint8Array( data.length );
                            for ( var i = 0; i < data.length; i ++ ) {
                                view[ i ] = data.charCodeAt( i );
                            }
                            if ( responseType === 'blob' ) {
                                response = new Blob( [ view.buffer ], { type: mimeType } );
                            } else {
                                response = view.buffer;
                            }
                            break;
                        case 'document':
                            var parser = new DOMParser();
                            response = parser.parseFromString( data, mimeType );
                            break;
                        case 'json':
                            response = JSON.parse( data );
                            break;
                        default: // 'text' or other
                            response = data;
                            break;
                    }
                    // Wait for next browser tick like standard XMLHttpRequest event dispatching does
                    setTimeout( function () {
                        if ( onLoad ) { onLoad( response ); }
                        scope.manager.itemEnd( url );
                    }, 0 );
                } catch ( error ) {
                    // Wait for next browser tick like standard XMLHttpRequest event dispatching does
                    setTimeout( function () {
                        if ( onError ) { onError( error ); }
                        scope.manager.itemError( url );
                        scope.manager.itemEnd( url );
                    }, 0 );
                }
            } else {
                // Initialise array for duplicate requests
                loading[ url ] = [];
                loading[ url ].push( {
                    onLoad: onLoad,
                    onProgress: onProgress,
                    onError: onError
                } );
                var request = new XMLHttpRequest();
                request.open( 'GET', url, true );
                request.addEventListener( 'load', function ( event ) {
                    var response = this.response;
                    var callbacks = loading[ url ];
                    delete loading[ url ];
                    if ( this.status === 200 || this.status === 0 ) {
                        // Some browsers return HTTP Status 0 when using non-http protocol
                        // e.g. 'file://' or 'data://'. Handle as success.
                        if ( this.status === 0 ) { console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); }
                        // Add to cache only on HTTP success, so that we do not cache
                        // error response bodies as proper responses to requests.
                        Cache.add( url, response );
                        for ( var i = 0, il = callbacks.length; i < il; i ++ ) {
                            var callback = callbacks[ i ];
                            if ( callback.onLoad ) { callback.onLoad( response ); }
                        }
                        scope.manager.itemEnd( url );
                    } else {
                        for ( var i = 0, il = callbacks.length; i < il; i ++ ) {
                            var callback = callbacks[ i ];
                            if ( callback.onError ) { callback.onError( event ); }
                        }
                        scope.manager.itemError( url );
                        scope.manager.itemEnd( url );
                    }
                }, false );
                request.addEventListener( 'progress', function ( event ) {
                    var callbacks = loading[ url ];
                    for ( var i = 0, il = callbacks.length; i < il; i ++ ) {
                        var callback = callbacks[ i ];
                        if ( callback.onProgress ) { callback.onProgress( event ); }
                    }
                }, false );
                request.addEventListener( 'error', function ( event ) {
                    var callbacks = loading[ url ];
                    delete loading[ url ];
                    for ( var i = 0, il = callbacks.length; i < il; i ++ ) {
                        var callback = callbacks[ i ];
                        if ( callback.onError ) { callback.onError( event ); }
                    }
                    scope.manager.itemError( url );
                    scope.manager.itemEnd( url );
                }, false );
                request.addEventListener( 'abort', function ( event ) {
                    var callbacks = loading[ url ];
                    delete loading[ url ];
                    for ( var i = 0, il = callbacks.length; i < il; i ++ ) {
                        var callback = callbacks[ i ];
                        if ( callback.onError ) { callback.onError( event ); }
                    }
                    scope.manager.itemError( url );
                    scope.manager.itemEnd( url );
                }, false );
                if ( this.responseType !== undefined ) { request.responseType = this.responseType; }
                if ( this.withCredentials !== undefined ) { request.withCredentials = this.withCredentials; }
                if ( request.overrideMimeType ) { request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' ); }
                for ( var header in this.requestHeader ) {
                    request.setRequestHeader( header, this.requestHeader[ header ] );
                }
                request.send( null );
            }
            scope.manager.itemStart( url );
            return request;
        },
        setResponseType: function ( value ) {
            this.responseType = value;
            return this;
        },
        setWithCredentials: function ( value ) {
            this.withCredentials = value;
            return this;
        },
        setMimeType: function ( value ) {
            this.mimeType = value;
            return this;
        },
        setRequestHeader: function ( value ) {
            this.requestHeader = value;
            return this;
        }
    } );
    /**
     * @author bhouston / http://clara.io/
     */
    function AnimationLoader( manager ) {
        Loader.call( this, manager );
    }
    AnimationLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: AnimationLoader,
        load: function ( url, onLoad, onProgress, onError ) {
            var scope = this;
            var loader = new FileLoader( scope.manager );
            loader.setPath( scope.path );
            loader.load( url, function ( text ) {
                onLoad( scope.parse( JSON.parse( text ) ) );
            }, onProgress, onError );
        },
        parse: function ( json ) {
            var animations = [];
            for ( var i = 0; i < json.length; i ++ ) {
                var clip = AnimationClip.parse( json[ i ] );
                animations.push( clip );
            }
            return animations;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     *
     * Abstract Base class to block based textures loader (dds, pvr, ...)
     *
     * Sub classes have to implement the parse() method which will be used in load().
     */
    function CompressedTextureLoader( manager ) {
        Loader.call( this, manager );
    }
    CompressedTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: CompressedTextureLoader,
        load: function ( url, onLoad, onProgress, onError ) {
            var scope = this;
            var images = [];
            var texture = new CompressedTexture();
            texture.image = images;
            var loader = new FileLoader( this.manager );
            loader.setPath( this.path );
            loader.setResponseType( 'arraybuffer' );
            function loadTexture( i ) {
                loader.load( url[ i ], function ( buffer ) {
                    var texDatas = scope.parse( buffer, true );
                    images[ i ] = {
                        width: texDatas.width,
                        height: texDatas.height,
                        format: texDatas.format,
                        mipmaps: texDatas.mipmaps
                    };
                    loaded += 1;
                    if ( loaded === 6 ) {
                        if ( texDatas.mipmapCount === 1 )
                            { texture.minFilter = LinearFilter; }
                        texture.format = texDatas.format;
                        texture.needsUpdate = true;
                        if ( onLoad ) { onLoad( texture ); }
                    }
                }, onProgress, onError );
            }
            if ( Array.isArray( url ) ) {
                var loaded = 0;
                for ( var i = 0, il = url.length; i < il; ++ i ) {
                    loadTexture( i );
                }
            } else {
                // compressed cubemap texture stored in a single DDS file
                loader.load( url, function ( buffer ) {
                    var texDatas = scope.parse( buffer, true );
                    if ( texDatas.isCubemap ) {
                        var faces = texDatas.mipmaps.length / texDatas.mipmapCount;
                        for ( var f = 0; f < faces; f ++ ) {
                            images[ f ] = { mipmaps: [] };
                            for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {
                                images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
                                images[ f ].format = texDatas.format;
                                images[ f ].width = texDatas.width;
                                images[ f ].height = texDatas.height;
                            }
                        }
                    } else {
                        texture.image.width = texDatas.width;
                        texture.image.height = texDatas.height;
                        texture.mipmaps = texDatas.mipmaps;
                    }
                    if ( texDatas.mipmapCount === 1 ) {
                        texture.minFilter = LinearFilter;
                    }
                    texture.format = texDatas.format;
                    texture.needsUpdate = true;
                    if ( onLoad ) { onLoad( texture ); }
                }, onProgress, onError );
            }
            return texture;
        }
    } );
    /**
     * @author Nikos M. / https://github.com/foo123/
     *
     * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
     *
     * Sub classes have to implement the parse() method which will be used in load().
     */
    function DataTextureLoader( manager ) {
        Loader.call( this, manager );
    }
    DataTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: DataTextureLoader,
        load: function ( url, onLoad, onProgress, onError ) {
            var scope = this;
            var texture = new DataTexture();
            var loader = new FileLoader( this.manager );
            loader.setResponseType( 'arraybuffer' );
            loader.setPath( this.path );
            loader.load( url, function ( buffer ) {
                var texData = scope.parse( buffer );
                if ( ! texData ) { return; }
                if ( texData.image !== undefined ) {
                    texture.image = texData.image;
                } else if ( texData.data !== undefined ) {
                    texture.image.width = texData.width;
                    texture.image.height = texData.height;
                    texture.image.data = texData.data;
                }
                texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
                texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
                texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
                texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
                texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
                if ( texData.format !== undefined ) {
                    texture.format = texData.format;
                }
                if ( texData.type !== undefined ) {
                    texture.type = texData.type;
                }
                if ( texData.mipmaps !== undefined ) {
                    texture.mipmaps = texData.mipmaps;
                    texture.minFilter = LinearMipmapLinearFilter; // presumably...
                }
                if ( texData.mipmapCount === 1 ) {
                    texture.minFilter = LinearFilter;
                }
                texture.needsUpdate = true;
                if ( onLoad ) { onLoad( texture, texData ); }
            }, onProgress, onError );
            return texture;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function ImageLoader( manager ) {
        Loader.call( this, manager );
    }
    ImageLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: ImageLoader,
        load: function ( url, onLoad, onProgress, onError ) {
            if ( this.path !== undefined ) { url = this.path + url; }
            url = this.manager.resolveURL( url );
            var scope = this;
            var cached = Cache.get( url );
            if ( cached !== undefined ) {
                scope.manager.itemStart( url );
                setTimeout( function () {
                    if ( onLoad ) { onLoad( cached ); }
                    scope.manager.itemEnd( url );
                }, 0 );
                return cached;
            }
            var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );
            function onImageLoad() {
                image.removeEventListener( 'load', onImageLoad, false );
                image.removeEventListener( 'error', onImageError, false );
                Cache.add( url, this );
                if ( onLoad ) { onLoad( this ); }
                scope.manager.itemEnd( url );
            }
            function onImageError( event ) {
                image.removeEventListener( 'load', onImageLoad, false );
                image.removeEventListener( 'error', onImageError, false );
                if ( onError ) { onError( event ); }
                scope.manager.itemError( url );
                scope.manager.itemEnd( url );
            }
            image.addEventListener( 'load', onImageLoad, false );
            image.addEventListener( 'error', onImageError, false );
            if ( url.substr( 0, 5 ) !== 'data:' ) {
                if ( this.crossOrigin !== undefined ) { image.crossOrigin = this.crossOrigin; }
            }
            scope.manager.itemStart( url );
            image.src = url;
            return image;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function CubeTextureLoader( manager ) {
        Loader.call( this, manager );
    }
    CubeTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: CubeTextureLoader,
        load: function ( urls, onLoad, onProgress, onError ) {
            var texture = new CubeTexture();
            var loader = new ImageLoader( this.manager );
            loader.setCrossOrigin( this.crossOrigin );
            loader.setPath( this.path );
            var loaded = 0;
            function loadTexture( i ) {
                loader.load( urls[ i ], function ( image ) {
                    texture.images[ i ] = image;
                    loaded ++;
                    if ( loaded === 6 ) {
                        texture.needsUpdate = true;
                        if ( onLoad ) { onLoad( texture ); }
                    }
                }, undefined, onError );
            }
            for ( var i = 0; i < urls.length; ++ i ) {
                loadTexture( i );
            }
            return texture;
        }
    } );
    /**
     * @author mrdoob / http://mrdoob.com/
     */
    function TextureLoader( manager ) {
        Loader.call( this, manager );
    }
    TextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
        constructor: TextureLoader,
        load: function ( url, onLoad, onProgress, onError ) {
            var texture = new Texture();
            var loader = new ImageLoader( this.manager );
            loader.setCrossOrigin( this.crossOrigin );
            loader.setPath( this.path );
            loader.load( url, function ( image ) {
                texture.image = image;
                // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
                var isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;
                texture.format = isJPEG ? RGBFormat : RGBAFormat;
                texture.needsUpdate = true;
                if ( onLoad !== undefined ) {
                    onLoad( texture );
                }
            }, onProgress, onError );
            return texture;
        }
    } );
    /**
     * @author zz85 / http://www.lab4games.net/zz85/blog
     * Extensible curve object
     *
     * Some common of curve methods:
     * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
     * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
     * .getPoints(), .getSpacedPoints()
     * .getLength()
     * .updateArcLengths()
     *
     * This following curves inherit from THREE.Curve:
     *
     * -- 2D curves --
     * THREE.ArcCurve
     * THREE.CubicBezierCurve
     * THREE.EllipseCurve
     * THREE.LineCurve
     * THREE.QuadraticBezierCurve
     * THREE.SplineCurve
     *
     * -- 3D curves --
     * THREE.CatmullRomCurve3
     * THREE.CubicBezierCurve3
     * THREE.LineCurve3
     * THREE.QuadraticBezierCurve3
     *
     * A series of curves can be represented as a THREE.CurvePath.
     *
     **/
    /**************************************************************
     *    Abstract Curve base class
     **************************************************************/
    function Curve() {
        this.type = 'Curve';
        this.arcLengthDivisions = 200;
    }
    Object.assign( Curve.prototype, {
        // Virtual base class method to overwrite and implement in subclasses
        //    - t [0 .. 1]
        getPoint: function ( /* t, optionalTarget */ ) {
            console.warn( 'THREE.Curve: .getPoint() not implemented.' );
            return null;
        },
        // Get point at relative position in curve according to arc length
        // - u [0 .. 1]
        getPointAt: function ( u, optionalTarget ) {
            var t = this.getUtoTmapping( u );
            return this.getPoint( t, optionalTarget );
        },
        // Get sequence of points using getPoint( t )
        getPoints: function ( divisions ) {
            if ( divisions === undefined ) { divisions = 5; }
            var points = [];
            for ( var d = 0; d <= divisions; d ++ ) {
                points.push( this.getPoint( d / divisions ) );
            }
            return points;
        },
        // Get sequence of points using getPointAt( u )
        getSpacedPoints: function ( divisions ) {
            if ( divisions === undefined ) { divisions = 5; }
            var points = [];
            for ( var d = 0; d <= divisions; d ++ ) {
                points.push( this.getPointAt( d / divisions ) );
            }
            return points;
        },
        // Get total curve arc length
        getLength: function () {
            var lengths = this.getLengths();
            return lengths[ lengths.length - 1 ];
        },
        // Get list of cumulative segment lengths
        getLengths: function ( divisions ) {
            if ( divisions === undefined ) { divisions = this.arcLengthDivisions; }
            if ( this.cacheArcLengths &&
                ( this.cacheArcLengths.length === divisions + 1 ) &&
                ! this.needsUpdate ) {
                return this.cacheArcLengths;
            }
            this.needsUpdate = false;
            var cache = [];
            var current, last = this.getPoint( 0 );
            var p, sum = 0;
            cache.push( 0 );
            for ( p = 1; p <= divisions; p ++ ) {
                current = this.getPoint( p / divisions );
                sum += current.distanceTo( last );
                cache.push( sum );
                last = current;
            }
            this.cacheArcLengths = cache;
            return cache; // { sums: cache, sum: sum }; Sum is in the last element.
        },
        updateArcLengths: function () {
            this.needsUpdate = true;
            this.getLengths();
        },
        // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
        getUtoTmapping: function ( u, distance ) {
            var arcLengths = this.getLengths();
            var i = 0, il = arcLengths.length;
            var targetArcLength; // The targeted u distance value to get
            if ( distance ) {
                targetArcLength = distance;
            } else {
                targetArcLength = u * arcLengths[ il - 1 ];
            }
            // binary search for the index with largest value smaller than target u distance
            var low = 0, high = il - 1, comparison;
            while ( low <= high ) {
                i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
                comparison = arcLengths[ i ] - targetArcLength;
                if ( comparison < 0 ) {
                    low = i + 1;
                } else if ( comparison > 0 ) {
                    high = i - 1;
                } else {
                    high = i;
                    break;
                    // DONE
                }
            }
            i = high;
            if ( arcLengths[ i ] === targetArcLength ) {
                return i / ( il - 1 );
            }
            // we could get finer grain at lengths, or use simple interpolation between two points
            var lengthBefore = arcLengths[ i ];
            var lengthAfter = arcLengths[ i + 1 ];
            var segmentLength = lengthAfter - lengthBefore;
            // determine where we are between the 'before' and 'after' points
            var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
            // add that fractional amount to t
            var t = ( i + segmentFraction ) / ( il - 1 );
            return t;
        },
        // Returns a unit vector tangent at t
        // In case any sub curve does not implement its tangent derivation,
        // 2 points a small delta apart will be used to find its gradient
        // which seems to give a reasonable approximation
        getTangent: function ( t, optionalTarget ) {
            var delta = 0.0001;
            var t1 = t - delta;
            var t2 = t + delta;
            // Capping in case of danger
            if ( t1 < 0 ) { t1 = 0; }
            if ( t2 > 1 ) { t2 = 1; }
            var pt1 = this.getPoint( t1 );
            var pt2 = this.getPoint( t2 );
            var tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );
            tangent.copy( pt2 ).sub( pt1 ).normalize();
            return tangent;
        },
        getTangentAt: function ( u, optionalTarget ) {
            var t = this.getUtoTmapping( u );
            return this.getTangent( t, optionalTarget );
        },
        computeFrenetFrames: function ( segments, closed ) {
            // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
            var normal = new Vector3();
            var tangents = [];
            var normals = [];
            var binormals = [];
            var vec = new Vector3();
            var mat = new Matrix4();
            var i, u, theta;
            // compute the tangent vectors for each segment on the curve
            for ( i = 0; i <= segments; i ++ ) {
                u = i / segments;
                tangents[ i ] = this.getTangentAt( u, new Vector3() );
                tangents[ i ].normalize();
            }
            // select an initial normal vector perpendicular to the first tangent vector,
            // and in the direction of the minimum tangent xyz component
            normals[ 0 ] = new Vector3();
            binormals[ 0 ] = new Vector3();
            var min = Number.MAX_VALUE;
            var tx = Math.abs( tangents[ 0 ].x );
            var ty = Math.abs( tangents[ 0 ].y );
            var tz = Math.abs( tangents[ 0 ].z );
            if ( tx <= min ) {
                min = tx;
                normal.set( 1, 0, 0 );
            }
            if ( ty <= min ) {
                min = ty;
                normal.set( 0, 1, 0 );
            }
            if ( tz <= min ) {
                normal.set( 0, 0, 1 );
            }
            vec.crossVectors( tangents[ 0 ], normal ).normalize();
            normals[ 0 ].crossVectors( tangents[ 0 ], vec );
            binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
            // compute the slowly-varying normal and binormal vectors for each segment on the curve
            for ( i = 1; i <= segments; i ++ ) {
                normals[ i ] = normals[ i - 1 ].clone();
                binormals[ i ] = binormals[ i - 1 ].clone();
                vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
                if ( vec.length() > Number.EPSILON ) {
                    vec.normalize();
                    theta = Math.acos( MathUtils.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
                    normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
                }
                binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
            }
            // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
            if ( closed === true ) {
                theta = Math.acos( MathUtils.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
                theta /= segments;
                if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
                    theta = - theta;
                }
                for ( i = 1; i <= segments; i ++ ) {
                    // twist a little...
                    normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
                    binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
                }
            }
            return {
                tangents: tangents,
                normals: normals,
                binormals: binormals
            };
        },
        clone: function () {
            return new this.constructor().copy( this );
        },
        copy: function ( source ) {
            this.arcLengthDivisions = source.arcLengthDivisions;
            return this;
        },
        toJSON: function () {
            var data = {
                metadata: {
                    version: 4.5,
                    type: 'Curve',
                    generator: 'Curve.toJSON'
                }
            };
            data.arcLengthDivisions = this.arcLengthDivisions;
            data.type = this.type;
            return data;
        },
        fromJSON: function ( json ) {
            this.arcLengthDivisions = json.arcLengthDivisions;
            return this;
        }
    } );
    function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
        Curve.call( this );
        this.type = 'EllipseCurve';
        this.aX = aX || 0;
        this.aY = aY ||...
SOLUTION.PDF

Answer To This Question Is Available To Download

Submit New Assignment

Copy and Paste Your Assignment Here