Adding more rows to the existing matrix(more element)Think of how to get the connectivity matrix in a general case to the existing matlab code.clc;clear all;close all;E=2e11; %(N/m^2) Young's...

2 answer below »
Adding more rows to the existing matrix(more element)
Think of how to get the connectivity matrix in a general case to the existing matlab code.




clc;


clear
all;



close
all;



E=2e11;
%(N/m^2) Young's Modulus



v=1/6;
%Poisson Ratio



rho=7850;%(kg/m^2) Density



a=1;
%(m)Length of one side




b=2;
%(m)Length of the other side



h=0.02;%(m)



Nnodes=9;
%number of nodes



Connectivity= 1;


alpha=a/b;



beta=b/a;




%coordinates=[...




% ];





%Coefficients of the Mass Matrix



m11_p=[...






3454 922*b -922*a 1226 398*b 548*a




922*b 320*b*b -252*a*b 398*b 160*b*b 168*a*b




-922*a -252*a*b 320*a*a -548*a -168*a*b -240*a*a




1226 398*b -548*a 3454 922*b 922*a




398*b 160*b*b -168*a*b 922*b 320*b*b 252*a*b




548*a 168*a*b -240*a*a 922*a 252*a*b 320*a*a];




m22_p=[...






3454 -922*b 922*a 1226 -398*b -548*a




-922*b 320*b*b -252*a*b -398*b 160*b*b 168*a*b




922*a -252*a*b 320*a*a 548*a -168*a*b -240*a*a




1226 -398*b 548*a 3454 -922*b -922*a




-398*b 160*b*b -168*a*b -922*b 320*b*b 252*a*b




-548*a 168*a*b -240*a*a -922*a 252*a*b 320*a*a];




m21_p=[...






394 232*b -232*a 1226 548*b 398*a




-232*b -120*b*b 112*a*b -548*b -240*b*b -168*a*b




232*a 112*a*b -120*a*a 398*a 168*a*b 160*a*a




1226 548*b -398*a 394 232*b 232*a




-548*b -240*b*b 168*a*b -232*b -120*b*b -112*a*b




-398*a -168*a*b 160*a*a -232*b -112*a*b -120*a*a];





% me=(rho*h*a*b/6300)*[...





% m11 m21'




% m21 m22];




m11=m11_p(1:3,1:3);


m21=m11_p(4:6,1:3);


m22=m11_p(4:6,4:6);


m12=m21';



m31=m21_p(1:3,1:3);


m41=m21_p(4:6,1:3);


m13=m31';


m14=m41';


m32=m21_p(1:3,4:6);


m42=m21_p(4:6,4:6);


m23=m32';


m24=m42';



m33=m22_p(1:3,1:3);


m43=m22_p(4:6,1:3);


m34=m43';


m44=m22_p(4:6,4:6);




%Elemental Mass Matrix;



me=[...




m11 m12 m13 m14




m21 m22 m23 m24




m31 m32 m33 m34




m41 m42 m43 m44];






% T3=[...




% lx mx nx




% ly my ny




% lz mz nz];




%





% T=diag(T3);




%





% M=T'*me*T;





% Coefficients of the stiffness matrix



k11_11=4*(beta^2+alpha^2)+2*(7-2*v)/5;


k11_21=2*b*(2*(alpha^2)+((1+4*v)/5));


k11_31=2*a*((-2*(beta^2))-((1+4*v)/5));


k11_22=4*(b^2)*((4*(alpha^2)/3)+(4*(1-v)/15));


k11_32=-4*v*a*b;


k11_33=4*(a^2)*((4*(beta^2)/3)+(4*(1-v)/15));



k11=[...






k11_11 k11_21 k11_31;




k11_21 k11_22 k11_32;




k11_31 k11_32 k11_33];




k21_11=-2*(2*beta^2-alpha^2)+2*(7-2*v)/5;


k21_12=2*b*((alpha^2)-((1+4*v)/5));


k21_13=2*a*((2*(beta^2))+((1-v)/5));


k21_21=k21_12;


k21_31=-k21_13;


k21_22=4*(b^2)*((2*(alpha^2)/3)-(4*(1-v)/15));


k21_33=4*(a^2)*((2*(beta^2)/3)-(1*(1-v)/15));



k21=[...






k21_11 k21_12 k21_13




k21_21 k21_22 0




k21_31 0 k21_33];




k31_11=-2*(beta^2+alpha^2)-2*(7-2*v)/5;


k31_12=2*b*(-(alpha^2)+((1-v)/5));


k31_13=2*a*((beta^2)-(1-v)/5);


k31_21=2*b*((alpha^2)-((1-v)/5));


k31_22=4*(b^2)*(((alpha^2)/3)+(1*(1-v)/15));


k31_31=2*a*(-(beta^2)+(1-v)/5);


k31_33=4*(a^2)*(((beta^2)/3)+(1*(1-v)/15));



k31=[...






k31_11 k31_12 k31_13




k31_21 k31_22 0




k31_31 0 k31_33];




k41_11=2*((beta^2)-2*(alpha^2))-2*(7-2*v)/5;


k41_12=2*b*(-2*(alpha^2)-(1-v)/5);


k41_13=2*a*(-(beta^2)+(1+4*v)/5);


k41_21=2*b*(2*(alpha^2)+(1-v)/5);


k41_22=4*(b^2)*((2*(alpha^2)/3)-(1*(1-v)/15));


k41_31=2*a*(-(beta^2)+(1+4*v)/5);


k41_33=4*(a^2)*((2*(beta^2)/3)-(4*(1-v)/15));



k41=[...






k41_11 k41_12 k41_13




k41_21 k41_22 0




k41_31 0 k41_33];





I1=[...






-1 0 0




0 1 0




0 0 1];




I2=[...




1 0 0




0 -1 0




0 0 1];




I3=[...




1 0 0




0 1 0




0 0 -1];




k22=I3'*k11*I3;



k32=I3'*k41*I3;


k42=I3'*k31*I3;


k33=I1'*k11*I1;


k43=I1'*k21*I1;


k44=I2'*k11*I2;




% exp_k=1;



kn=E*(h^3)/(48*(1-(v^2))*a*b);



k=kn*[...






k11 k21' k31' k41'




k21 k22 k32' k42'




k31 k32 k33 k43'




k41 k42 k43 k44];





% eqn1=k-(omega^2)*me;




% solve(det(k-(omega^2).*me==0),omega)




% solu=solve(eqn1=0,omega);



z=zeros(3,3);




% Node coordinates and connectivity matrix




% GNodeCoords = [0 0; Lx 0; Lx Ly; 0 Ly];



B = [1 2 5 4;2 3 6 5;6 9 8 5;8 7 4 5];




%K_global=assemble(K_local,B)




%K_global is global stiffness matrix




%k is local stiffness matrices of all elements




% B = connectivity matrix




% when B=ElConnMatrix 1



[NE,j] = size(B);
%number of elements and number of nodes per element



Nnodes = max(max(B));


K_global = zeros(3*Nnodes,3*Nnodes);


M_global = zeros(3*Nnodes,3*Nnodes);



for
i=1:NE




aux=[3*B(i,:)-2;3*B(i,:)-1;3*B(i,:)];




aux=aux(:);




K_global(aux,aux)=K_global(aux,aux)+k;




M_global(aux,aux)=M_global(aux,aux)+me;








end









%Global Stiffness Matrix




K=kn*[...




k11 k21' z k41' k31' z z z z




k21 k22+k11 k21' k42' k32'+k41' k31' z z z




z k21 k22 z k42' k32' z z z




k41 k42 z k44+k33 k43+k43' z k32 k31 z




k31 k32+k41 k42 k43'+k43 k33+3*k44 k43+k41 k42 k43+k41 k42




z k31 k32 z k43'+k41' k33+k11 z k31' k21'




z z z k32' k42' z k22 k21 z




z z z k31' k43'+k41' k31 k21' k33+k11 k32




z z z z k42' k21 z k32' k22];






%Global Mass Matrix




% M=(rho*h*a*b/6300)*[...



M=[...




m11 m21' z m41' m31' z z z z




m21 m22+m11 m21' m42' m32'+m41' m31' z z z




z m21 m22 z m42' m32' z z z




m41 m42 z m44+m33 m43+m43' z m32 m31 z




m31 m32+m41 m42 m43'+m43 m33+3*m44 m43+m41 m42 m43+m41 m42




z m31 m32 z m43'+m41' m33+m11 z m31' m21'




z z z m32' m42' z m22 m21 z




z z z m31' m43'+m41' m31 m21' m33+m11 m32




z z z z m42' m21 z m32' m22];




[vecfreq,freq]=eig(K,M);



% freq = diag(freq) ;




% freq=sqrt(freq); % UNITS :rad per sec




% freqHz = abs(freq/(2*pi)) ; % UNITS : Hertz




% freqs=sort(freqHz);





[freq_sorted, ind] = sort(diag(freq),'ascend');


V_sorted = vecfreq(:,ind);


req_freq=sqrt(freq_sorted(1:10));
%Top 10 natural frequencies



freqHz = abs(req_freq/(2*pi));
% UNITS : Hertz





for
jj=1:10



V = zeros(size(V_sorted,2),size(V_sorted,2)) ;


x_a=linspace(0,a*2,27);


y_b=linspace(0,b*2,27);


[s,t] = meshgrid(x_a,y_b);




for
ii = 1:size(V_sorted,2)




V(:,ii) = V_sorted(:,jj);




% figure(ii)




% plot(V(:,ii));




end




% figure(jj)




% surf (s,t,abs(V));




end






% N1 = 1/4*(1-t).*(1-s);




% subplot(2,2,1);




% surf(s,t,abs(vecfreq));




% xlabel('a');




% ylabel('b');




%





% N2 = @(s,t)1/4*(1-t).*(1+s);




% subplot(2,2,2);




% surf(s,t,N2(s,t));




% xlabel('a');




% ylabel('b');




%





% N3 = @(s,t)1/4*(1+t).*(1+s);




% subplot(2,2,3);




% surf(s,t,N3(s,t));




% xlabel('a');




% ylabel('b');




%





% N4 = @(s,t)1/4*(1+t).*(1-s);




% subplot(2,2,4);




% surf(s,t,N4(s,t));




% xlabel('a');




% ylabel('b');








SymmetryM=(M-M.');


SymmetryK=(K-K.');


SymmetryMe=(me-me.');









py : D Adding were wows £0 his maka wo move, eles YY) . ) A made an @ Fest Cao. tly) gl [NEw - 3 (x ce] Pp poe | \ 2+ \3 In % How tr webs - dlc ee ax nodes ——7N las ) OA hort chee * ley cf We Conn echo msdn vw will he Lv a Nec+1+41 pa] il > lise c { loot - i Se Loops 45 (ook re whl poof Jer hae - Giese a Conmechrasty sabi foc Joist ent Foe of ons —=nd Mebe & p J Loep 0 Sf “te ret becawsy atl sto | VORA SAM lap UA Cae A Coedr a Loop = a just cece The usy ——— Ceealp doe Ee Covad Ne sn odbet $ 3 Gers X Loot Ctl, Mk x $ Copp af Mak wet pec $2 clc; clear all; close all; E=2e11; %(N/m^2) Young's Modulus v=1/6; %Poisson Ratio rho=7850;%(kg/m^2) Density a=1; %(m)Length of one side b=2; %(m)Length of the other side h=0.02;%(m) Nnodes=9; %number of nodes Connectivity= 1; alpha=a/b; beta=b/a; %coordinates=[... % ]; %Coefficients of the Mass Matrix m11_p=[... 3454 922*b -922*a 1226 398*b 548*a 922*b 320*b*b -252*a*b 398*b 160*b*b 168*a*b -922*a -252*a*b 320*a*a -548*a -168*a*b -240*a*a 1226 398*b -548*a 3454 922*b 922*a 398*b 160*b*b -168*a*b 922*b 320*b*b 252*a*b 548*a 168*a*b -240*a*a 922*a 252*a*b 320*a*a]; m22_p=[... 3454 -922*b 922*a 1226 -398*b -548*a -922*b 320*b*b -252*a*b -398*b 160*b*b 168*a*b 922*a -252*a*b 320*a*a 548*a -168*a*b -240*a*a 1226 -398*b 548*a 3454 -922*b -922*a -398*b 160*b*b -168*a*b -922*b 320*b*b 252*a*b -548*a 168*a*b -240*a*a -922*a 252*a*b 320*a*a]; m21_p=[... 394 232*b -232*a 1226 548*b 398*a -232*b -120*b*b 112*a*b -548*b -240*b*b -168*a*b 232*a 112*a*b -120*a*a 398*a 168*a*b 160*a*a 1226 548*b -398*a 394 232*b 232*a -548*b -240*b*b 168*a*b -232*b -120*b*b -112*a*b -398*a -168*a*b 160*a*a -232*b -112*a*b -120*a*a]; % me=(rho*h*a*b/6300)*[... % m11 m21' % m21 m22]; m11=m11_p(1:3,1:3); m21=m11_p(4:6,1:3); m22=m11_p(4:6,4:6); m12=m21'; m31=m21_p(1:3,1:3); m41=m21_p(4:6,1:3); m13=m31'; m14=m41'; m32=m21_p(1:3,4:6); m42=m21_p(4:6,4:6); m23=m32'; m24=m42'; m33=m22_p(1:3,1:3); m43=m22_p(4:6,1:3); m34=m43'; m44=m22_p(4:6,4:6); %Elemental Mass Matrix; me=[... m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 m41 m42 m43 m44]; % T3=[... % lx mx nx % ly my ny % lz mz nz]; % % T=diag(T3); % % M=T'*me*T; % Coefficients of the stiffness matrix k11_11=4*(beta^2+alpha^2)+2*(7-2*v)/5; k11_21=2*b*(2*(alpha^2)+((1+4*v)/5)); k11_31=2*a*((-2*(beta^2))-((1+4*v)/5)); k11_22=4*(b^2)*((4*(alpha^2)/3)+(4*(1-v)/15)); k11_32=-4*v*a*b; k11_33=4*(a^2)*((4*(beta^2)/3)+(4*(1-v)/15)); k11=[... k11_11 k11_21 k11_31; k11_21 k11_22 k11_32; k11_31 k11_32 k11_33]; k21_11=-2*(2*beta^2-alpha^2)+2*(7-2*v)/5; k21_12=2*b*((alpha^2)-((1+4*v)/5)); k21_13=2*a*((2*(beta^2))+((1-v)/5)); k21_21=k21_12; k21_31=-k21_13; k21_22=4*(b^2)*((2*(alpha^2)/3)-(4*(1-v)/15)); k21_33=4*(a^2)*((2*(beta^2)/3)-(1*(1-v)/15)); k21=[... k21_11 k21_12 k21_13 k21_21 k21_22 0 k21_31 0 k21_33]; k31_11=-2*(beta^2+alpha^2)-2*(7-2*v)/5; k31_12=2*b*(-(alpha^2)+((1-v)/5)); k31_13=2*a*((beta^2)-(1-v)/5); k31_21=2*b*((alpha^2)-((1-v)/5)); k31_22=4*(b^2)*(((alpha^2)/3)+(1*(1-v)/15)); k31_31=2*a*(-(beta^2)+(1-v)/5); k31_33=4*(a^2)*(((beta^2)/3)+(1*(1-v)/15)); k31=[... k31_11 k31_12 k31_13 k31_21 k31_22 0 k31_31 0 k31_33]; k41_11=2*((beta^2)-2*(alpha^2))-2*(7-2*v)/5; k41_12=2*b*(-2*(alpha^2)-(1-v)/5); k41_13=2*a*(-(beta^2)+(1+4*v)/5); k41_21=2*b*(2*(alpha^2)+(1-v)/5); k41_22=4*(b^2)*((2*(alpha^2)/3)-(1*(1-v)/15)); k41_31=2*a*(-(beta^2)+(1+4*v)/5); k41_33=4*(a^2)*((2*(beta^2)/3)-(4*(1-v)/15)); k41=[... k41_11 k41_12 k41_13 k41_21 k41_22 0 k41_31 0 k41_33]; I1=[... -1 0 0 0 1 0 0 0 1]; I2=[... 1 0 0 0 -1 0 0 0 1]; I3=[... 1 0 0 0 1 0 0 0 -1]; k22=I3'*k11*I3; k32=I3'*k41*I3; k42=I3'*k31*I3; k33=I1'*k11*I1; k43=I1'*k21*I1; k44=I2'*k11*I2; % exp_k=1; kn=E*(h^3)/(48*(1-(v^2))*a*b); k=kn*[... k11 k21' k31' k41' k21 k22 k32' k42' k31 k32 k33 k43' k41 k42 k43 k44]; % eqn1=k-(omega^2)*me; % solve(det(k-(omega^2).*me==0),omega) % solu=solve(eqn1=0,omega); z=zeros(3,3); % Node coordinates and connectivity matrix % GNodeCoords = [0 0; Lx 0; Lx Ly; 0 Ly]; B = [1 2 5 4;2 3 6 5;6 9 8 5;8 7 4 5]; %K_global=assemble(K_local,B) %K_global is global stiffness matrix %k is local stiffness matrices of all elements % B = connectivity matrix % when B=ElConnMatrix 1 [NE,j] = size(B); %number of elements and number of nodes per element Nnodes = max(max(B)); K_global = zeros(3*Nnodes,3*Nnodes); M_global = zeros(3*Nnodes,3*Nnodes); for i=1:NE aux=[3*B(i,:)-2;3*B(i,:)-1;3*B(i,:)]; aux=aux(:); K_global(aux,aux)=K_global(aux,aux)+k; M_global(aux,aux)=M_global(aux,aux)+me; end %Global Stiffness Matrix K=kn*[... k11 k21' z k41' k31' z z z z k21 k22+k11 k21' k42' k32'+k41' k31' z z z z k21 k22 z k42' k32' z z z k41 k42 z k44+k33 k43+k43' z k32 k31 z k31 k32+k41 k42 k43'+k43 k33+3*k44 k43+k41 k42 k43+k41 k42 z k31 k32 z k43'+k41' k33+k11 z k31' k21' z z z k32' k42' z k22 k21 z z z z k31' k43'+k41' k31 k21' k33+k11 k32 z z z z k42' k21 z k32' k22]; %Global Mass Matrix % M=(rho*h*a*b/6300)*[... M=[... m11 m21' z m41' m31' z z z z m21 m22+m11 m21' m42' m32'+m41' m31' z z z z m21 m22 z m42' m32' z z z m41 m42 z m44+m33 m43+m43' z m32 m31 z m31 m32+m41 m42 m43'+m43 m33+3*m44 m43+m41 m42 m43+m41 m42 z m31 m32 z m43'+m41' m33+m11 z m31' m21' z z z m32' m42' z m22 m21 z z z z m31' m43'+m41' m31 m21' m33+m11 m32 z z z z m42' m21 z m32' m22]; [vecfreq,freq]=eig(K,M); % freq = diag(freq) ; % freq=sqrt(freq); % UNITS :rad per sec % freqHz = abs(freq/(2*pi)) ; % UNITS : Hertz % freqs=sort(freqHz); [freq_sorted, ind] = sort(diag(freq),'ascend'); V_sorted = vecfreq(:,ind); req_freq=sqrt(freq_sorted(1:10)); %Top 10 natural frequencies freqHz = abs(req_freq/(2*pi)); % UNITS : Hertz for jj=1:10 V = zeros(size(V_sorted,2),size(V_sorted,2)) ; x_a=linspace(0,a*2,27); y_b=linspace(0,b*2,27); [s,t] = meshgrid(x_a,y_b); for ii = 1:size(V_sorted,2) V(:,ii) = V_sorted(:,jj); % figure(ii) % plot(V(:,ii)); end % figure(jj) % surf (s,t,abs(V)); end % N1 = 1/4*(1-t).*(1-s); % subplot(2,2,1); % surf(s,t,abs(vecfreq)); % xlabel('a'); % ylabel('b'); % % N2 = @(s,t)1/4*(1-t).*(1+s); % subplot(2,2,2); % surf(s,t,N2(s,t)); % xlabel('a'); % ylabel('b'); % % N3 = @(s,t)1/4*(1+t).*(1+s); % subplot(2,2,3); % surf(s,t,N3(s,t)); % xlabel('a'); % ylabel('b'); % % N4 = @(s,t)1/4*(1+t).*(1-s); % subplot(2,2,4); % surf(s,t,N4(s,t)); % xlabel('a'); % ylabel('b'); SymmetryM=(M-M.'); SymmetryK=(K-K.'); SymmetryMe=(me-me.');
Answered 12 days AfterJun 06, 2023

Answer To: Adding more rows to the existing matrix(more element)Think of how to get the connectivity matrix in...

Kshitij answered on Jun 13 2023
9 Votes
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here